{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE UndecidableInstances #-}
module Optics.Traversal
(
Traversal
, Traversal'
, traversalVL
, traverseOf
, traversed
, both
, forOf
, sequenceOf
, transposeOf
, mapAccumROf
, mapAccumLOf
, scanr1Of
, scanl1Of
, rewriteMOf
, transformMOf
, failover
, failover'
, backwards
, partsOf
, singular
, adjoin
, A_Traversal
, TraversalVL
, TraversalVL'
)
where
import Control.Applicative
import Control.Applicative.Backwards
import Control.Monad.Trans.State
import Data.Bitraversable
import Data.Functor.Identity
import Data.Profunctor.Indexed
import Optics.AffineTraversal
import Optics.Fold
import Optics.Internal.Optic
import Optics.Internal.Traversal
import Optics.Internal.Utils
import Optics.Lens
import Optics.ReadOnly
type Traversal s t a b = Optic A_Traversal NoIx s t a b
type Traversal' s a = Optic' A_Traversal NoIx s a
type TraversalVL s t a b = forall f. Applicative f => (a -> f b) -> s -> f t
type TraversalVL' s a = TraversalVL s s a a
traversalVL :: TraversalVL s t a b -> Traversal s t a b
traversalVL :: forall s t a b. TraversalVL s t a b -> Traversal s t a b
traversalVL TraversalVL s t a b
t = (forall (p :: * -> * -> * -> *) i.
Profunctor p =>
Optic_ A_Traversal p i (Curry NoIx i) s t a b)
-> Optic A_Traversal NoIx s t a b
forall k (is :: IxList) s t a b.
(forall (p :: * -> * -> * -> *) i.
Profunctor p =>
Optic_ k p i (Curry is i) s t a b)
-> Optic k is s t a b
Optic (TraversalVL s t a b -> p i a b -> p i s t
forall a b s t i.
(forall (f :: * -> *). Applicative f => (a -> f b) -> s -> f t)
-> p i a b -> p i s t
forall (p :: * -> * -> * -> *) a b s t i.
Traversing p =>
(forall (f :: * -> *). Applicative f => (a -> f b) -> s -> f t)
-> p i a b -> p i s t
wander (a -> f b) -> s -> f t
TraversalVL s t a b
t)
{-# INLINE traversalVL #-}
traverseOf
:: (Is k A_Traversal, Applicative f)
=> Optic k is s t a b
-> (a -> f b) -> s -> f t
traverseOf :: forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf Optic k is s t a b
o = \a -> f b
f -> Star f (Curry is Any) s t -> s -> f t
forall (f :: * -> *) i a b. Star f i a b -> a -> f b
runStar (Star f (Curry is Any) s t -> s -> f t)
-> Star f (Curry is Any) s t -> s -> f t
forall a b. (a -> b) -> a -> b
$ Optic A_Traversal is s t a b
-> Optic_ A_Traversal (Star f) Any (Curry is Any) s t a b
forall (p :: * -> * -> * -> *) k (is :: IxList) s t a b i.
Profunctor p =>
Optic k is s t a b -> Optic_ k p i (Curry is i) s t a b
getOptic (forall destKind srcKind (is :: IxList) s t a b.
Is srcKind destKind =>
Optic srcKind is s t a b -> Optic destKind is s t a b
castOptic @A_Traversal Optic k is s t a b
o) ((a -> f b) -> Star f Any a b
forall (f :: * -> *) i a b. (a -> f b) -> Star f i a b
Star a -> f b
f)
{-# INLINE traverseOf #-}
forOf
:: (Is k A_Traversal, Applicative f)
=> Optic k is s t a b
-> s -> (a -> f b) -> f t
forOf :: forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> s -> (a -> f b) -> f t
forOf = ((a -> f b) -> s -> f t) -> s -> (a -> f b) -> f t
forall a b c. (a -> b -> c) -> b -> a -> c
flip (((a -> f b) -> s -> f t) -> s -> (a -> f b) -> f t)
-> (Optic k is s t a b -> (a -> f b) -> s -> f t)
-> Optic k is s t a b
-> s
-> (a -> f b)
-> f t
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Optic k is s t a b -> (a -> f b) -> s -> f t
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf
{-# INLINE forOf #-}
sequenceOf
:: (Is k A_Traversal, Applicative f)
=> Optic k is s t (f b) b
-> s -> f t
sequenceOf :: forall k (f :: * -> *) (is :: IxList) s t b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t (f b) b -> s -> f t
sequenceOf Optic k is s t (f b) b
o = Optic k is s t (f b) b -> (f b -> f b) -> s -> f t
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf Optic k is s t (f b) b
o f b -> f b
forall a. a -> a
id
{-# INLINE sequenceOf #-}
transposeOf
:: Is k A_Traversal
=> Optic k is s t [a] a
-> s -> [t]
transposeOf :: forall k (is :: IxList) s t a.
Is k A_Traversal =>
Optic k is s t [a] a -> s -> [t]
transposeOf Optic k is s t [a] a
o = ZipList t -> [t]
forall a. ZipList a -> [a]
getZipList (ZipList t -> [t]) -> (s -> ZipList t) -> s -> [t]
forall b c a. Coercible b c => (b -> c) -> (a -> b) -> a -> c
#. Optic k is s t [a] a -> ([a] -> ZipList a) -> s -> ZipList t
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf Optic k is s t [a] a
o [a] -> ZipList a
forall a. [a] -> ZipList a
ZipList
{-# INLINE transposeOf #-}
mapAccumLOf
:: Is k A_Traversal
=> Optic k is s t a b
-> (acc -> a -> (b, acc)) -> acc -> s -> (t, acc)
mapAccumLOf :: forall k (is :: IxList) s t a b acc.
Is k A_Traversal =>
Optic k is s t a b
-> (acc -> a -> (b, acc)) -> acc -> s -> (t, acc)
mapAccumLOf Optic k is s t a b
o = \acc -> a -> (b, acc)
f acc
acc0 s
s ->
let g :: a -> StateT acc Identity b
g a
a = (acc -> (b, acc)) -> StateT acc Identity b
forall (m :: * -> *) s a. Monad m => (s -> (a, s)) -> StateT s m a
state ((acc -> (b, acc)) -> StateT acc Identity b)
-> (acc -> (b, acc)) -> StateT acc Identity b
forall a b. (a -> b) -> a -> b
$ \acc
acc -> acc -> a -> (b, acc)
f acc
acc a
a
in State acc t -> acc -> (t, acc)
forall s a. State s a -> s -> (a, s)
runState (Optic k is s t a b
-> (a -> StateT acc Identity b) -> s -> State acc t
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf Optic k is s t a b
o a -> StateT acc Identity b
g s
s) acc
acc0
{-# INLINE mapAccumLOf #-}
mapAccumROf
:: Is k A_Traversal
=> Optic k is s t a b
-> (acc -> a -> (b, acc)) -> acc -> s -> (t, acc)
mapAccumROf :: forall k (is :: IxList) s t a b acc.
Is k A_Traversal =>
Optic k is s t a b
-> (acc -> a -> (b, acc)) -> acc -> s -> (t, acc)
mapAccumROf = Optic A_Traversal NoIx s t a b
-> (acc -> a -> (b, acc)) -> acc -> s -> (t, acc)
forall k (is :: IxList) s t a b acc.
Is k A_Traversal =>
Optic k is s t a b
-> (acc -> a -> (b, acc)) -> acc -> s -> (t, acc)
mapAccumLOf (Optic A_Traversal NoIx s t a b
-> (acc -> a -> (b, acc)) -> acc -> s -> (t, acc))
-> (Optic k is s t a b -> Optic A_Traversal NoIx s t a b)
-> Optic k is s t a b
-> (acc -> a -> (b, acc))
-> acc
-> s
-> (t, acc)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Optic k is s t a b -> Optic A_Traversal NoIx s t a b
forall k (is :: IxList) s t a b.
Is k A_Traversal =>
Optic k is s t a b -> Traversal s t a b
backwards
{-# INLINE mapAccumROf #-}
scanl1Of
:: Is k A_Traversal
=> Optic k is s t a a
-> (a -> a -> a) -> s -> t
scanl1Of :: forall k (is :: IxList) s t a.
Is k A_Traversal =>
Optic k is s t a a -> (a -> a -> a) -> s -> t
scanl1Of Optic k is s t a a
o = \a -> a -> a
f ->
let step :: Maybe a -> a -> (a, Maybe a)
step Maybe a
Nothing a
a = (a
a, a -> Maybe a
forall a. a -> Maybe a
Just a
a)
step (Just a
s) a
a = let r :: a
r = a -> a -> a
f a
s a
a in (a
r, a -> Maybe a
forall a. a -> Maybe a
Just a
r)
in (t, Maybe a) -> t
forall a b. (a, b) -> a
fst ((t, Maybe a) -> t) -> (s -> (t, Maybe a)) -> s -> t
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Optic k is s t a a
-> (Maybe a -> a -> (a, Maybe a)) -> Maybe a -> s -> (t, Maybe a)
forall k (is :: IxList) s t a b acc.
Is k A_Traversal =>
Optic k is s t a b
-> (acc -> a -> (b, acc)) -> acc -> s -> (t, acc)
mapAccumLOf Optic k is s t a a
o Maybe a -> a -> (a, Maybe a)
step Maybe a
forall a. Maybe a
Nothing
{-# INLINE scanl1Of #-}
scanr1Of
:: Is k A_Traversal
=> Optic k is s t a a
-> (a -> a -> a) -> s -> t
scanr1Of :: forall k (is :: IxList) s t a.
Is k A_Traversal =>
Optic k is s t a a -> (a -> a -> a) -> s -> t
scanr1Of Optic k is s t a a
o = \a -> a -> a
f ->
let step :: Maybe a -> a -> (a, Maybe a)
step Maybe a
Nothing a
a = (a
a, a -> Maybe a
forall a. a -> Maybe a
Just a
a)
step (Just a
s) a
a = let r :: a
r = a -> a -> a
f a
a a
s in (a
r, a -> Maybe a
forall a. a -> Maybe a
Just a
r)
in (t, Maybe a) -> t
forall a b. (a, b) -> a
fst ((t, Maybe a) -> t) -> (s -> (t, Maybe a)) -> s -> t
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Optic k is s t a a
-> (Maybe a -> a -> (a, Maybe a)) -> Maybe a -> s -> (t, Maybe a)
forall k (is :: IxList) s t a b acc.
Is k A_Traversal =>
Optic k is s t a b
-> (acc -> a -> (b, acc)) -> acc -> s -> (t, acc)
mapAccumROf Optic k is s t a a
o Maybe a -> a -> (a, Maybe a)
step Maybe a
forall a. Maybe a
Nothing
{-# INLINE scanr1Of #-}
rewriteMOf
:: (Is k A_Traversal, Monad m)
=> Optic k is a b a b
-> (b -> m (Maybe a)) -> a -> m b
rewriteMOf :: forall k (m :: * -> *) (is :: IxList) a b.
(Is k A_Traversal, Monad m) =>
Optic k is a b a b -> (b -> m (Maybe a)) -> a -> m b
rewriteMOf Optic k is a b a b
l b -> m (Maybe a)
f = a -> m b
go
where
go :: a -> m b
go = Optic k is a b a b -> (b -> m b) -> a -> m b
forall k (m :: * -> *) (is :: IxList) a b.
(Is k A_Traversal, Monad m) =>
Optic k is a b a b -> (b -> m b) -> a -> m b
transformMOf Optic k is a b a b
l (\b
x -> b -> m (Maybe a)
f b
x m (Maybe a) -> (Maybe a -> m b) -> m b
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= m b -> (a -> m b) -> Maybe a -> m b
forall b a. b -> (a -> b) -> Maybe a -> b
maybe (b -> m b
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return b
x) a -> m b
go)
{-# INLINE rewriteMOf #-}
transformMOf
:: (Is k A_Traversal, Monad m)
=> Optic k is a b a b
-> (b -> m b) -> a -> m b
transformMOf :: forall k (m :: * -> *) (is :: IxList) a b.
(Is k A_Traversal, Monad m) =>
Optic k is a b a b -> (b -> m b) -> a -> m b
transformMOf Optic k is a b a b
l b -> m b
f = a -> m b
go
where
go :: a -> m b
go a
t = Optic k is a b a b -> (a -> m b) -> a -> m b
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf Optic k is a b a b
l a -> m b
go a
t m b -> (b -> m b) -> m b
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= b -> m b
f
{-# INLINE transformMOf #-}
failover
:: Is k A_Traversal
=> Optic k is s t a b
-> (a -> b) -> s -> Maybe t
failover :: forall k (is :: IxList) s t a b.
Is k A_Traversal =>
Optic k is s t a b -> (a -> b) -> s -> Maybe t
failover Optic k is s t a b
o = \a -> b
f s
s ->
let OrT Bool
visited Identity t
t = Optic k is s t a b -> (a -> OrT Identity b) -> s -> OrT Identity t
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf Optic k is s t a b
o (Identity b -> OrT Identity b
forall (f :: * -> *) a. f a -> OrT f a
wrapOrT (Identity b -> OrT Identity b)
-> (a -> Identity b) -> a -> OrT Identity b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> Identity b
forall a. a -> Identity a
Identity (b -> Identity b) -> (a -> b) -> a -> Identity b
forall b c a. Coercible b c => (b -> c) -> (a -> b) -> a -> c
#. a -> b
f) s
s
in if Bool
visited
then t -> Maybe t
forall a. a -> Maybe a
Just (Identity t -> t
forall a. Identity a -> a
runIdentity Identity t
t)
else Maybe t
forall a. Maybe a
Nothing
{-# INLINE failover #-}
failover'
:: Is k A_Traversal
=> Optic k is s t a b
-> (a -> b) -> s -> Maybe t
failover' :: forall k (is :: IxList) s t a b.
Is k A_Traversal =>
Optic k is s t a b -> (a -> b) -> s -> Maybe t
failover' Optic k is s t a b
o = \a -> b
f s
s ->
let OrT Bool
visited Identity' t
t = Optic k is s t a b
-> (a -> OrT Identity' b) -> s -> OrT Identity' t
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf Optic k is s t a b
o (Identity' b -> OrT Identity' b
forall (f :: * -> *) a. f a -> OrT f a
wrapOrT (Identity' b -> OrT Identity' b)
-> (a -> Identity' b) -> a -> OrT Identity' b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> Identity' b
forall a. a -> Identity' a
wrapIdentity' (b -> Identity' b) -> (a -> b) -> a -> Identity' b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> b
f) s
s
in if Bool
visited
then t -> Maybe t
forall a. a -> Maybe a
Just (Identity' t -> t
forall a. Identity' a -> a
unwrapIdentity' Identity' t
t)
else Maybe t
forall a. Maybe a
Nothing
{-# INLINE failover' #-}
traversed :: Traversable t => Traversal (t a) (t b) a b
traversed :: forall (t :: * -> *) a b.
Traversable t =>
Traversal (t a) (t b) a b
traversed = (forall (p :: * -> * -> * -> *) i.
Profunctor p =>
Optic_ A_Traversal p i (Curry NoIx i) (t a) (t b) a b)
-> Optic A_Traversal NoIx (t a) (t b) a b
forall k (is :: IxList) s t a b.
(forall (p :: * -> * -> * -> *) i.
Profunctor p =>
Optic_ k p i (Curry is i) s t a b)
-> Optic k is s t a b
Optic Optic__ p i i (t a) (t b) a b
p i a b -> p (Curry NoIx i) (t a) (t b)
forall (p :: * -> * -> * -> *) i.
Profunctor p =>
Optic_ A_Traversal p i (Curry NoIx i) (t a) (t b) a b
forall (p :: * -> * -> * -> *) (f :: * -> *) i a b.
(Traversing p, Traversable f) =>
Optic__ p i i (f a) (f b) a b
traversed__
{-# INLINE traversed #-}
both :: Bitraversable r => Traversal (r a a) (r b b) a b
both :: forall (r :: * -> * -> *) a b.
Bitraversable r =>
Traversal (r a a) (r b b) a b
both = TraversalVL (r a a) (r b b) a b -> Traversal (r a a) (r b b) a b
forall s t a b. TraversalVL s t a b -> Traversal s t a b
traversalVL (TraversalVL (r a a) (r b b) a b -> Traversal (r a a) (r b b) a b)
-> TraversalVL (r a a) (r b b) a b -> Traversal (r a a) (r b b) a b
forall a b. (a -> b) -> a -> b
$ \a -> f b
f -> (a -> f b) -> (a -> f b) -> r a a -> f (r b b)
forall (f :: * -> *) a c b d.
Applicative f =>
(a -> f c) -> (b -> f d) -> r a b -> f (r c d)
forall (t :: * -> * -> *) (f :: * -> *) a c b d.
(Bitraversable t, Applicative f) =>
(a -> f c) -> (b -> f d) -> t a b -> f (t c d)
bitraverse a -> f b
f a -> f b
f
{-# INLINE both #-}
backwards
:: Is k A_Traversal
=> Optic k is s t a b
-> Traversal s t a b
backwards :: forall k (is :: IxList) s t a b.
Is k A_Traversal =>
Optic k is s t a b -> Traversal s t a b
backwards Optic k is s t a b
o = TraversalVL s t a b -> Traversal s t a b
forall s t a b. TraversalVL s t a b -> Traversal s t a b
traversalVL (TraversalVL s t a b -> Traversal s t a b)
-> TraversalVL s t a b -> Traversal s t a b
forall a b. (a -> b) -> a -> b
$ \a -> f b
f -> Backwards f t -> f t
forall {k} (f :: k -> *) (a :: k). Backwards f a -> f a
forwards (Backwards f t -> f t) -> (s -> Backwards f t) -> s -> f t
forall b c a. Coercible b c => (b -> c) -> (a -> b) -> a -> c
#. Optic k is s t a b -> (a -> Backwards f b) -> s -> Backwards f t
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf Optic k is s t a b
o (f b -> Backwards f b
forall {k} (f :: k -> *) (a :: k). f a -> Backwards f a
Backwards (f b -> Backwards f b) -> (a -> f b) -> a -> Backwards f b
forall b c a. Coercible b c => (b -> c) -> (a -> b) -> a -> c
#. a -> f b
f)
{-# INLINE backwards #-}
partsOf
:: forall k is s t a. Is k A_Traversal
=> Optic k is s t a a
-> Lens s t [a] [a]
partsOf :: forall k (is :: IxList) s t a.
Is k A_Traversal =>
Optic k is s t a a -> Lens s t [a] [a]
partsOf Optic k is s t a a
o = LensVL s t [a] [a] -> Lens s t [a] [a]
forall s t a b. LensVL s t a b -> Lens s t a b
lensVL (LensVL s t [a] [a] -> Lens s t [a] [a])
-> LensVL s t [a] [a] -> Lens s t [a] [a]
forall a b. (a -> b) -> a -> b
$ \[a] -> f [a]
f s
s -> State [a] t -> [a] -> t
forall s a. State s a -> s -> a
evalState (Optic k is s t a a
-> (a -> StateT [a] Identity a) -> s -> State [a] t
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf Optic k is s t a a
o a -> StateT [a] Identity a
forall {m :: * -> *} {b}. Monad m => b -> StateT [b] m b
update s
s)
([a] -> t) -> f [a] -> f t
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [a] -> f [a]
f (Optic' A_Fold is s a -> s -> [a]
forall k (is :: IxList) s a.
Is k A_Fold =>
Optic' k is s a -> s -> [a]
toListOf (Optic A_Traversal is s t a a
-> Optic' (ReadOnlyOptic A_Traversal) is s a
forall (is :: IxList).
Optic A_Traversal is s t a a
-> Optic' (ReadOnlyOptic A_Traversal) is s a
forall k s t a b (is :: IxList).
ToReadOnly k s t a b =>
Optic k is s t a b -> Optic' (ReadOnlyOptic k) is s a
getting (Optic A_Traversal is s t a a
-> Optic' (ReadOnlyOptic A_Traversal) is s a)
-> Optic A_Traversal is s t a a
-> Optic' (ReadOnlyOptic A_Traversal) is s a
forall a b. (a -> b) -> a -> b
$ forall destKind srcKind (is :: IxList) s t a b.
Is srcKind destKind =>
Optic srcKind is s t a b -> Optic destKind is s t a b
castOptic @A_Traversal Optic k is s t a a
o) s
s)
where
update :: b -> StateT [b] m b
update b
a = StateT [b] m [b]
forall (m :: * -> *) s. Monad m => StateT s m s
get StateT [b] m [b] -> ([b] -> StateT [b] m b) -> StateT [b] m b
forall a b.
StateT [b] m a -> (a -> StateT [b] m b) -> StateT [b] m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
b
a' : [b]
as' -> [b] -> StateT [b] m ()
forall (m :: * -> *) s. Monad m => s -> StateT s m ()
put [b]
as' StateT [b] m () -> StateT [b] m b -> StateT [b] m b
forall a b. StateT [b] m a -> StateT [b] m b -> StateT [b] m b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> b -> StateT [b] m b
forall a. a -> StateT [b] m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure b
a'
[] -> b -> StateT [b] m b
forall a. a -> StateT [b] m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure b
a
{-# INLINE partsOf #-}
singular
:: forall k is s a. Is k A_Traversal
=> Optic' k is s a
-> AffineTraversal' s a
singular :: forall k (is :: IxList) s a.
Is k A_Traversal =>
Optic' k is s a -> AffineTraversal' s a
singular Optic' k is s a
o = AffineTraversalVL s s a a -> AffineTraversal s s a a
forall s t a b.
AffineTraversalVL s t a b -> AffineTraversal s t a b
atraversalVL (AffineTraversalVL s s a a -> AffineTraversal s s a a)
-> AffineTraversalVL s s a a -> AffineTraversal s s a a
forall a b. (a -> b) -> a -> b
$ \forall r. r -> f r
point a -> f a
f s
s ->
case Optic' A_Traversal is s a -> s -> Maybe a
forall k (is :: IxList) s a.
Is k A_Fold =>
Optic' k is s a -> s -> Maybe a
headOf (forall destKind srcKind (is :: IxList) s t a b.
Is srcKind destKind =>
Optic srcKind is s t a b -> Optic destKind is s t a b
castOptic @A_Traversal Optic' k is s a
o) s
s of
Maybe a
Nothing -> s -> f s
forall r. r -> f r
point s
s
Just a
a -> State (Maybe a) s -> Maybe a -> s
forall s a. State s a -> s -> a
evalState (Optic' k is s a
-> (a -> StateT (Maybe a) Identity a) -> s -> State (Maybe a) s
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf Optic' k is s a
o a -> StateT (Maybe a) Identity a
forall {m :: * -> *} {b}. Monad m => b -> StateT (Maybe b) m b
update s
s) (Maybe a -> s) -> (a -> Maybe a) -> a -> s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Maybe a
forall a. a -> Maybe a
Just (a -> s) -> f a -> f s
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f a
f a
a
where
update :: b -> StateT (Maybe b) m b
update b
a = StateT (Maybe b) m (Maybe b)
forall (m :: * -> *) s. Monad m => StateT s m s
get StateT (Maybe b) m (Maybe b)
-> (Maybe b -> StateT (Maybe b) m b) -> StateT (Maybe b) m b
forall a b.
StateT (Maybe b) m a
-> (a -> StateT (Maybe b) m b) -> StateT (Maybe b) m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
Just b
a' -> Maybe b -> StateT (Maybe b) m ()
forall (m :: * -> *) s. Monad m => s -> StateT s m ()
put Maybe b
forall a. Maybe a
Nothing StateT (Maybe b) m ()
-> StateT (Maybe b) m b -> StateT (Maybe b) m b
forall a b.
StateT (Maybe b) m a
-> StateT (Maybe b) m b -> StateT (Maybe b) m b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> b -> StateT (Maybe b) m b
forall a. a -> StateT (Maybe b) m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure b
a'
Maybe b
Nothing -> b -> StateT (Maybe b) m b
forall a. a -> StateT (Maybe b) m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure b
a
{-# INLINE singular #-}
adjoin
:: (Is k A_Traversal, Is l A_Traversal)
=> Optic' k is s a
-> Optic' l js s a
-> Traversal' s a
adjoin :: forall k l (is :: IxList) s a (js :: IxList).
(Is k A_Traversal, Is l A_Traversal) =>
Optic' k is s a -> Optic' l js s a -> Traversal' s a
adjoin Optic' k is s a
o1 Optic' l js s a
o2 = Traversal s s [a] [a]
combined Traversal s s [a] [a]
-> Optic A_Traversal NoIx [a] [a] a a
-> Optic A_Traversal NoIx s s a a
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic A_Traversal NoIx [a] [a] a a
forall (t :: * -> *) a b.
Traversable t =>
Traversal (t a) (t b) a b
traversed
where
combined :: Traversal s s [a] [a]
combined = TraversalVL s s [a] [a] -> Traversal s s [a] [a]
forall s t a b. TraversalVL s t a b -> Traversal s t a b
traversalVL (TraversalVL s s [a] [a] -> Traversal s s [a] [a])
-> TraversalVL s s [a] [a] -> Traversal s s [a] [a]
forall a b. (a -> b) -> a -> b
$ \[a] -> f [a]
f s
s0 ->
(\[a]
r1 [a]
r2 ->
let s1 :: s
s1 = State [a] s -> [a] -> s
forall s a. State s a -> s -> a
evalState (Optic' k is s a -> (a -> StateT [a] Identity a) -> s -> State [a] s
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf Optic' k is s a
o1 a -> StateT [a] Identity a
forall {m :: * -> *} {b}. Monad m => b -> StateT [b] m b
update s
s0) [a]
r1
s2 :: s
s2 = State [a] s -> [a] -> s
forall s a. State s a -> s -> a
evalState (Optic' l js s a -> (a -> StateT [a] Identity a) -> s -> State [a] s
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf Optic' l js s a
o2 a -> StateT [a] Identity a
forall {m :: * -> *} {b}. Monad m => b -> StateT [b] m b
update s
s1) [a]
r2
in s
s2
)
([a] -> [a] -> s) -> f [a] -> f ([a] -> s)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [a] -> f [a]
f (Optic' A_Traversal is s a -> s -> [a]
forall k (is :: IxList) s a.
Is k A_Fold =>
Optic' k is s a -> s -> [a]
toListOf (forall destKind srcKind (is :: IxList) s t a b.
Is srcKind destKind =>
Optic srcKind is s t a b -> Optic destKind is s t a b
castOptic @A_Traversal Optic' k is s a
o1) s
s0)
f ([a] -> s) -> f [a] -> f s
forall a b. f (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> [a] -> f [a]
f (Optic' A_Traversal js s a -> s -> [a]
forall k (is :: IxList) s a.
Is k A_Fold =>
Optic' k is s a -> s -> [a]
toListOf (forall destKind srcKind (is :: IxList) s t a b.
Is srcKind destKind =>
Optic srcKind is s t a b -> Optic destKind is s t a b
castOptic @A_Traversal Optic' l js s a
o2) s
s0)
update :: b -> StateT [b] m b
update b
a = StateT [b] m [b]
forall (m :: * -> *) s. Monad m => StateT s m s
get StateT [b] m [b] -> ([b] -> StateT [b] m b) -> StateT [b] m b
forall a b.
StateT [b] m a -> (a -> StateT [b] m b) -> StateT [b] m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
b
a' : [b]
as' -> [b] -> StateT [b] m ()
forall (m :: * -> *) s. Monad m => s -> StateT s m ()
put [b]
as' StateT [b] m () -> StateT [b] m b -> StateT [b] m b
forall a b. StateT [b] m a -> StateT [b] m b -> StateT [b] m b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> b -> StateT [b] m b
forall a. a -> StateT [b] m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure b
a'
[] -> b -> StateT [b] m b
forall a. a -> StateT [b] m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure b
a
infixr 6 `adjoin`
{-# INLINE [1] adjoin #-}
{-# RULES
"adjoin_12_3" forall o1 o2 o3. adjoin o1 (adjoin o2 o3) = adjoin3 o1 o2 o3
"adjoin_21_3" forall o1 o2 o3. adjoin (adjoin o1 o2) o3 = adjoin3 o1 o2 o3
"adjoin_13_4" forall o1 o2 o3 o4. adjoin o1 (adjoin3 o2 o3 o4) = adjoin4 o1 o2 o3 o4
"adjoin_31_4" forall o1 o2 o3 o4. adjoin (adjoin3 o1 o2 o3) o4 = adjoin4 o1 o2 o3 o4
#-}
adjoin3
:: (Is k1 A_Traversal, Is k2 A_Traversal, Is k3 A_Traversal)
=> Optic' k1 is1 s a
-> Optic' k2 is2 s a
-> Optic' k3 is3 s a
-> Traversal' s a
adjoin3 :: forall k1 k2 k3 (is1 :: IxList) s a (is2 :: IxList)
(is3 :: IxList).
(Is k1 A_Traversal, Is k2 A_Traversal, Is k3 A_Traversal) =>
Optic' k1 is1 s a
-> Optic' k2 is2 s a -> Optic' k3 is3 s a -> Traversal' s a
adjoin3 Optic' k1 is1 s a
o1 Optic' k2 is2 s a
o2 Optic' k3 is3 s a
o3 = Traversal s s [a] [a]
combined Traversal s s [a] [a]
-> Optic A_Traversal NoIx [a] [a] a a
-> Optic A_Traversal NoIx s s a a
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic A_Traversal NoIx [a] [a] a a
forall (t :: * -> *) a b.
Traversable t =>
Traversal (t a) (t b) a b
traversed
where
combined :: Traversal s s [a] [a]
combined = TraversalVL s s [a] [a] -> Traversal s s [a] [a]
forall s t a b. TraversalVL s t a b -> Traversal s t a b
traversalVL (TraversalVL s s [a] [a] -> Traversal s s [a] [a])
-> TraversalVL s s [a] [a] -> Traversal s s [a] [a]
forall a b. (a -> b) -> a -> b
$ \[a] -> f [a]
f s
s0 ->
(\[a]
r1 [a]
r2 [a]
r3 ->
let s1 :: s
s1 = State [a] s -> [a] -> s
forall s a. State s a -> s -> a
evalState (Optic' k1 is1 s a
-> (a -> StateT [a] Identity a) -> s -> State [a] s
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf Optic' k1 is1 s a
o1 a -> StateT [a] Identity a
forall {m :: * -> *} {b}. Monad m => b -> StateT [b] m b
update s
s0) [a]
r1
s2 :: s
s2 = State [a] s -> [a] -> s
forall s a. State s a -> s -> a
evalState (Optic' k2 is2 s a
-> (a -> StateT [a] Identity a) -> s -> State [a] s
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf Optic' k2 is2 s a
o2 a -> StateT [a] Identity a
forall {m :: * -> *} {b}. Monad m => b -> StateT [b] m b
update s
s1) [a]
r2
s3 :: s
s3 = State [a] s -> [a] -> s
forall s a. State s a -> s -> a
evalState (Optic' k3 is3 s a
-> (a -> StateT [a] Identity a) -> s -> State [a] s
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf Optic' k3 is3 s a
o3 a -> StateT [a] Identity a
forall {m :: * -> *} {b}. Monad m => b -> StateT [b] m b
update s
s2) [a]
r3
in s
s3
)
([a] -> [a] -> [a] -> s) -> f [a] -> f ([a] -> [a] -> s)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [a] -> f [a]
f (Optic' A_Traversal is1 s a -> s -> [a]
forall k (is :: IxList) s a.
Is k A_Fold =>
Optic' k is s a -> s -> [a]
toListOf (forall destKind srcKind (is :: IxList) s t a b.
Is srcKind destKind =>
Optic srcKind is s t a b -> Optic destKind is s t a b
castOptic @A_Traversal Optic' k1 is1 s a
o1) s
s0)
f ([a] -> [a] -> s) -> f [a] -> f ([a] -> s)
forall a b. f (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> [a] -> f [a]
f (Optic' A_Traversal is2 s a -> s -> [a]
forall k (is :: IxList) s a.
Is k A_Fold =>
Optic' k is s a -> s -> [a]
toListOf (forall destKind srcKind (is :: IxList) s t a b.
Is srcKind destKind =>
Optic srcKind is s t a b -> Optic destKind is s t a b
castOptic @A_Traversal Optic' k2 is2 s a
o2) s
s0)
f ([a] -> s) -> f [a] -> f s
forall a b. f (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> [a] -> f [a]
f (Optic' A_Traversal is3 s a -> s -> [a]
forall k (is :: IxList) s a.
Is k A_Fold =>
Optic' k is s a -> s -> [a]
toListOf (forall destKind srcKind (is :: IxList) s t a b.
Is srcKind destKind =>
Optic srcKind is s t a b -> Optic destKind is s t a b
castOptic @A_Traversal Optic' k3 is3 s a
o3) s
s0)
update :: b -> StateT [b] m b
update b
a = StateT [b] m [b]
forall (m :: * -> *) s. Monad m => StateT s m s
get StateT [b] m [b] -> ([b] -> StateT [b] m b) -> StateT [b] m b
forall a b.
StateT [b] m a -> (a -> StateT [b] m b) -> StateT [b] m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
b
a' : [b]
as' -> [b] -> StateT [b] m ()
forall (m :: * -> *) s. Monad m => s -> StateT s m ()
put [b]
as' StateT [b] m () -> StateT [b] m b -> StateT [b] m b
forall a b. StateT [b] m a -> StateT [b] m b -> StateT [b] m b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> b -> StateT [b] m b
forall a. a -> StateT [b] m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure b
a'
[] -> b -> StateT [b] m b
forall a. a -> StateT [b] m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure b
a
{-# INLINE [1] adjoin3 #-}
{-# RULES
"adjoin_211_4" forall o1 o2 o3 o4. adjoin3 (adjoin o1 o2) o3 o4 = adjoin4 o1 o2 o3 o4
"adjoin_121_4" forall o1 o2 o3 o4. adjoin3 o1 (adjoin o2 o3) o4 = adjoin4 o1 o2 o3 o4
"adjoin_112_4" forall o1 o2 o3 o4. adjoin3 o1 o2 (adjoin o3 o4) = adjoin4 o1 o2 o3 o4
#-}
adjoin4
:: (Is k1 A_Traversal, Is k2 A_Traversal, Is k3 A_Traversal, Is k4 A_Traversal)
=> Optic' k1 is1 s a
-> Optic' k2 is2 s a
-> Optic' k3 is3 s a
-> Optic' k4 is4 s a
-> Traversal' s a
adjoin4 :: forall k1 k2 k3 k4 (is1 :: IxList) s a (is2 :: IxList)
(is3 :: IxList) (is4 :: IxList).
(Is k1 A_Traversal, Is k2 A_Traversal, Is k3 A_Traversal,
Is k4 A_Traversal) =>
Optic' k1 is1 s a
-> Optic' k2 is2 s a
-> Optic' k3 is3 s a
-> Optic' k4 is4 s a
-> Traversal' s a
adjoin4 Optic' k1 is1 s a
o1 Optic' k2 is2 s a
o2 Optic' k3 is3 s a
o3 Optic' k4 is4 s a
o4 = Traversal s s [a] [a]
combined Traversal s s [a] [a]
-> Optic A_Traversal NoIx [a] [a] a a
-> Optic A_Traversal NoIx s s a a
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic A_Traversal NoIx [a] [a] a a
forall (t :: * -> *) a b.
Traversable t =>
Traversal (t a) (t b) a b
traversed
where
combined :: Traversal s s [a] [a]
combined = TraversalVL s s [a] [a] -> Traversal s s [a] [a]
forall s t a b. TraversalVL s t a b -> Traversal s t a b
traversalVL (TraversalVL s s [a] [a] -> Traversal s s [a] [a])
-> TraversalVL s s [a] [a] -> Traversal s s [a] [a]
forall a b. (a -> b) -> a -> b
$ \[a] -> f [a]
f s
s0 ->
(\[a]
r1 [a]
r2 [a]
r3 [a]
r4 ->
let s1 :: s
s1 = State [a] s -> [a] -> s
forall s a. State s a -> s -> a
evalState (Optic' k1 is1 s a
-> (a -> StateT [a] Identity a) -> s -> State [a] s
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf Optic' k1 is1 s a
o1 a -> StateT [a] Identity a
forall {m :: * -> *} {b}. Monad m => b -> StateT [b] m b
update s
s0) [a]
r1
s2 :: s
s2 = State [a] s -> [a] -> s
forall s a. State s a -> s -> a
evalState (Optic' k2 is2 s a
-> (a -> StateT [a] Identity a) -> s -> State [a] s
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf Optic' k2 is2 s a
o2 a -> StateT [a] Identity a
forall {m :: * -> *} {b}. Monad m => b -> StateT [b] m b
update s
s1) [a]
r2
s3 :: s
s3 = State [a] s -> [a] -> s
forall s a. State s a -> s -> a
evalState (Optic' k3 is3 s a
-> (a -> StateT [a] Identity a) -> s -> State [a] s
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf Optic' k3 is3 s a
o3 a -> StateT [a] Identity a
forall {m :: * -> *} {b}. Monad m => b -> StateT [b] m b
update s
s2) [a]
r3
s4 :: s
s4 = State [a] s -> [a] -> s
forall s a. State s a -> s -> a
evalState (Optic' k4 is4 s a
-> (a -> StateT [a] Identity a) -> s -> State [a] s
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf Optic' k4 is4 s a
o4 a -> StateT [a] Identity a
forall {m :: * -> *} {b}. Monad m => b -> StateT [b] m b
update s
s3) [a]
r4
in s
s4
)
([a] -> [a] -> [a] -> [a] -> s)
-> f [a] -> f ([a] -> [a] -> [a] -> s)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [a] -> f [a]
f (Optic' A_Traversal is1 s a -> s -> [a]
forall k (is :: IxList) s a.
Is k A_Fold =>
Optic' k is s a -> s -> [a]
toListOf (forall destKind srcKind (is :: IxList) s t a b.
Is srcKind destKind =>
Optic srcKind is s t a b -> Optic destKind is s t a b
castOptic @A_Traversal Optic' k1 is1 s a
o1) s
s0)
f ([a] -> [a] -> [a] -> s) -> f [a] -> f ([a] -> [a] -> s)
forall a b. f (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> [a] -> f [a]
f (Optic' A_Traversal is2 s a -> s -> [a]
forall k (is :: IxList) s a.
Is k A_Fold =>
Optic' k is s a -> s -> [a]
toListOf (forall destKind srcKind (is :: IxList) s t a b.
Is srcKind destKind =>
Optic srcKind is s t a b -> Optic destKind is s t a b
castOptic @A_Traversal Optic' k2 is2 s a
o2) s
s0)
f ([a] -> [a] -> s) -> f [a] -> f ([a] -> s)
forall a b. f (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> [a] -> f [a]
f (Optic' A_Traversal is3 s a -> s -> [a]
forall k (is :: IxList) s a.
Is k A_Fold =>
Optic' k is s a -> s -> [a]
toListOf (forall destKind srcKind (is :: IxList) s t a b.
Is srcKind destKind =>
Optic srcKind is s t a b -> Optic destKind is s t a b
castOptic @A_Traversal Optic' k3 is3 s a
o3) s
s0)
f ([a] -> s) -> f [a] -> f s
forall a b. f (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> [a] -> f [a]
f (Optic' A_Traversal is4 s a -> s -> [a]
forall k (is :: IxList) s a.
Is k A_Fold =>
Optic' k is s a -> s -> [a]
toListOf (forall destKind srcKind (is :: IxList) s t a b.
Is srcKind destKind =>
Optic srcKind is s t a b -> Optic destKind is s t a b
castOptic @A_Traversal Optic' k4 is4 s a
o4) s
s0)
update :: b -> StateT [b] m b
update b
a = StateT [b] m [b]
forall (m :: * -> *) s. Monad m => StateT s m s
get StateT [b] m [b] -> ([b] -> StateT [b] m b) -> StateT [b] m b
forall a b.
StateT [b] m a -> (a -> StateT [b] m b) -> StateT [b] m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
b
a' : [b]
as' -> [b] -> StateT [b] m ()
forall (m :: * -> *) s. Monad m => s -> StateT s m ()
put [b]
as' StateT [b] m () -> StateT [b] m b -> StateT [b] m b
forall a b. StateT [b] m a -> StateT [b] m b -> StateT [b] m b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> b -> StateT [b] m b
forall a. a -> StateT [b] m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure b
a'
[] -> b -> StateT [b] m b
forall a. a -> StateT [b] m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure b
a
{-# INLINE [1] adjoin4 #-}