{-# OPTIONS_HADDOCK not-home #-}
module Optics.Internal.Traversal where
import Data.Profunctor.Indexed
import Optics.Internal.Optic
import Optics.Internal.Fold
import Optics.Internal.Setter
traversed__
:: (Traversing p, Traversable f)
=> Optic__ p i i (f a) (f b) a b
traversed__ :: forall (p :: * -> * -> * -> *) (f :: * -> *) i a b.
(Traversing p, Traversable f) =>
Optic__ p i i (f a) (f b) a b
traversed__ = (forall (f :: * -> *).
Applicative f =>
(a -> f b) -> f a -> f (f b))
-> p i a b -> p i (f a) (f b)
forall a b s t i.
(forall (f :: * -> *). Applicative f => (a -> f b) -> s -> f t)
-> p i a b -> p i s t
forall (p :: * -> * -> * -> *) a b s t i.
Traversing p =>
(forall (f :: * -> *). Applicative f => (a -> f b) -> s -> f t)
-> p i a b -> p i s t
wander (a -> f b) -> f a -> f (f b)
forall (f :: * -> *). Applicative f => (a -> f b) -> f a -> f (f b)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> f a -> f (f b)
traverse
{-# INLINE [0] traversed__ #-}
{-# RULES
"traversed__ -> wander traverse"
forall (o :: Star g i a b). traversed__ o = wander traverse o
:: Traversable f => Star g i (f a) (f b)
"traversed__ -> folded__"
forall (o :: Forget r i a b). traversed__ o = folded__ o
:: Foldable f => Forget r i (f a) (f b)
"traversed__ -> mapped__"
forall (o :: FunArrow i a b). traversed__ o = mapped__ o
:: Functor f => FunArrow i (f a) (f b)
#-}