{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE FunctionalDependencies #-}
module Data.Row.Switch
( AppliesTo(..)
, switch
, caseon
)
where
import Data.Proxy
import Data.Bifunctor (Bifunctor(..))
import Data.Row.Internal
import Data.Row.Records
import Data.Row.Variants
class AppliesTo r f x | r x -> f, f r -> x where
applyTo :: f -> x -> r
instance AppliesTo r (x -> r) x where
applyTo :: (x -> r) -> x -> r
applyTo = (x -> r) -> x -> r
forall a b. (a -> b) -> a -> b
($)
data SwitchData r v = SwitchData (Rec r) (Var v)
newtype Const2 x y z = Const2 { forall {k} {k} x (y :: k) (z :: k). Const2 x y z -> x
getConst2 :: x }
switch :: forall v r x. BiForall r v (AppliesTo x) => Var v -> Rec r -> x
switch :: forall (v :: Row (*)) (r :: Row (*)) x.
BiForall r v (AppliesTo x) =>
Var v -> Rec r -> x
switch Var v
v Rec r
r = Const2 x r v -> x
forall {k} {k} x (y :: k) (z :: k). Const2 x y z -> x
getConst2 (Const2 x r v -> x) -> Const2 x r v -> x
forall a b. (a -> b) -> a -> b
$ forall k1 k2 (r1 :: Row k1) (r2 :: Row k2)
(c :: k1 -> k2 -> Constraint) (p :: * -> * -> *)
(f :: Row k1 -> Row k2 -> *) (g :: Row k1 -> Row k2 -> *)
(h :: k1 -> k2 -> *).
(BiForall r1 r2 c, Bifunctor p) =>
Proxy (Proxy h, Proxy p)
-> (f Empty Empty -> g Empty Empty)
-> (forall (ℓ :: Symbol) (τ1 :: k1) (τ2 :: k2) (ρ1 :: Row k1)
(ρ2 :: Row k2).
(KnownSymbol ℓ, c τ1 τ2, HasType ℓ τ1 ρ1, HasType ℓ τ2 ρ2) =>
Label ℓ -> f ρ1 ρ2 -> p (f (ρ1 .- ℓ) (ρ2 .- ℓ)) (h τ1 τ2))
-> (forall (ℓ :: Symbol) (τ1 :: k1) (τ2 :: k2) (ρ1 :: Row k1)
(ρ2 :: Row k2).
(KnownSymbol ℓ, c τ1 τ2, FrontExtends ℓ τ1 ρ1,
FrontExtends ℓ τ2 ρ2, AllUniqueLabels (Extend ℓ τ1 ρ1),
AllUniqueLabels (Extend ℓ τ2 ρ2)) =>
Label ℓ
-> p (g ρ1 ρ2) (h τ1 τ2) -> g (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2))
-> f r1 r2
-> g r1 r2
biMetamorph @_ @_ @r @v @(AppliesTo x) @Either @SwitchData @(Const2 x) @(Const2 x)
Proxy (Proxy (Const2 x), Proxy Either)
forall {k} (t :: k). Proxy t
Proxy SwitchData Empty Empty -> Const2 x Empty Empty
forall {r :: Row (*)} {a}. SwitchData r Empty -> a
doNil Label ℓ
-> SwitchData ρ1 ρ2
-> Either (SwitchData (ρ1 .- ℓ) (ρ2 .- ℓ)) (Const2 x τ1 τ2)
forall (ℓ :: Symbol) τ1 τ2 (ρ1 :: Row (*)) (ρ2 :: Row (*)).
(KnownSymbol ℓ, AppliesTo x τ1 τ2, HasType ℓ τ1 ρ1,
HasType ℓ τ2 ρ2) =>
Label ℓ
-> SwitchData ρ1 ρ2
-> Either (SwitchData (ρ1 .- ℓ) (ρ2 .- ℓ)) (Const2 x τ1 τ2)
doUncons Label ℓ
-> Either (Const2 x ρ1 ρ2) (Const2 x τ1 τ2)
-> Const2 x (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2)
forall {k} {k} {k} {k} {k} {k} {p} {x} {y :: k} {z :: k} {y :: k}
{z :: k} {y :: k} {z :: k}.
p -> Either (Const2 x y z) (Const2 x y z) -> Const2 x y z
forall (ℓ :: Symbol) τ1 τ2 (ρ1 :: Row (*)) (ρ2 :: Row (*)).
(KnownSymbol ℓ, AppliesTo x τ1 τ2, FrontExtends ℓ τ1 ρ1,
FrontExtends ℓ τ2 ρ2, AllUniqueLabels (Extend ℓ τ1 ρ1),
AllUniqueLabels (Extend ℓ τ2 ρ2)) =>
Label ℓ
-> Either (Const2 x ρ1 ρ2) (Const2 x τ1 τ2)
-> Const2 x (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2)
doCons (SwitchData r v -> Const2 x r v) -> SwitchData r v -> Const2 x r v
forall a b. (a -> b) -> a -> b
$ Rec r -> Var v -> SwitchData r v
forall (r :: Row (*)) (v :: Row (*)).
Rec r -> Var v -> SwitchData r v
SwitchData Rec r
r Var v
v
where
doNil :: SwitchData r Empty -> a
doNil (SwitchData Rec r
_ Var Empty
v) = Var Empty -> a
forall a. Var Empty -> a
impossible Var Empty
v
doUncons :: forall ℓ f τ ϕ ρ. (KnownSymbol ℓ, AppliesTo x f τ, HasType ℓ f ϕ, HasType ℓ τ ρ)
=> Label ℓ -> SwitchData ϕ ρ -> Either (SwitchData (ϕ .- ℓ) (ρ .- ℓ)) (Const2 x f τ)
doUncons :: forall (ℓ :: Symbol) τ1 τ2 (ρ1 :: Row (*)) (ρ2 :: Row (*)).
(KnownSymbol ℓ, AppliesTo x τ1 τ2, HasType ℓ τ1 ρ1,
HasType ℓ τ2 ρ2) =>
Label ℓ
-> SwitchData ρ1 ρ2
-> Either (SwitchData (ρ1 .- ℓ) (ρ2 .- ℓ)) (Const2 x τ1 τ2)
doUncons Label ℓ
l (SwitchData Rec ϕ
r Var ρ
v) = (Var (ρ .- ℓ) -> SwitchData (ϕ .- ℓ) (ρ .- ℓ))
-> (τ -> Const2 x f τ)
-> Either (Var (ρ .- ℓ)) τ
-> Either (SwitchData (ϕ .- ℓ) (ρ .- ℓ)) (Const2 x f τ)
forall a b c d. (a -> b) -> (c -> d) -> Either a c -> Either b d
forall (p :: * -> * -> *) a b c d.
Bifunctor p =>
(a -> b) -> (c -> d) -> p a c -> p b d
bimap (Rec (ϕ .- ℓ) -> Var (ρ .- ℓ) -> SwitchData (ϕ .- ℓ) (ρ .- ℓ)
forall (r :: Row (*)) (v :: Row (*)).
Rec r -> Var v -> SwitchData r v
SwitchData (Rec (ϕ .- ℓ) -> Var (ρ .- ℓ) -> SwitchData (ϕ .- ℓ) (ρ .- ℓ))
-> Rec (ϕ .- ℓ) -> Var (ρ .- ℓ) -> SwitchData (ϕ .- ℓ) (ρ .- ℓ)
forall a b. (a -> b) -> a -> b
$ Label ℓ -> Rec ϕ -> Rec (ϕ .- ℓ)
forall (l :: Symbol) (r :: Row (*)).
KnownSymbol l =>
Label l -> Rec r -> Rec (r .- l)
lazyRemove Label ℓ
l Rec ϕ
r) (x -> Const2 x f τ
forall {k} {k} x (y :: k) (z :: k). x -> Const2 x y z
Const2 (x -> Const2 x f τ) -> (τ -> x) -> τ -> Const2 x f τ
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f -> τ -> x
forall r f x. AppliesTo r f x => f -> x -> r
applyTo (Rec ϕ
r Rec ϕ -> Label ℓ -> ϕ .! ℓ
forall (l :: Symbol) (r :: Row (*)).
KnownSymbol l =>
Rec r -> Label l -> r .! l
.! Label ℓ
l)) (Either (Var (ρ .- ℓ)) τ
-> Either (SwitchData (ϕ .- ℓ) (ρ .- ℓ)) (Const2 x f τ))
-> Either (Var (ρ .- ℓ)) τ
-> Either (SwitchData (ϕ .- ℓ) (ρ .- ℓ)) (Const2 x f τ)
forall a b. (a -> b) -> a -> b
$ Var ρ -> Label ℓ -> Either (Var (ρ .- ℓ)) (ρ .! ℓ)
forall (l :: Symbol) (r :: Row (*)).
KnownSymbol l =>
Var r -> Label l -> Either (Var (r .- l)) (r .! l)
trial Var ρ
v Label ℓ
l
doCons :: p -> Either (Const2 x y z) (Const2 x y z) -> Const2 x y z
doCons p
_ (Left (Const2 x
x)) = x -> Const2 x y z
forall {k} {k} x (y :: k) (z :: k). x -> Const2 x y z
Const2 x
x
doCons p
_ (Right (Const2 x
x)) = x -> Const2 x y z
forall {k} {k} x (y :: k) (z :: k). x -> Const2 x y z
Const2 x
x
caseon :: forall v r x. BiForall r v (AppliesTo x) => Rec r -> Var v -> x
caseon :: forall (v :: Row (*)) (r :: Row (*)) x.
BiForall r v (AppliesTo x) =>
Rec r -> Var v -> x
caseon = (Var v -> Rec r -> x) -> Rec r -> Var v -> x
forall a b c. (a -> b -> c) -> b -> a -> c
flip Var v -> Rec r -> x
forall (v :: Row (*)) (r :: Row (*)) x.
BiForall r v (AppliesTo x) =>
Var v -> Rec r -> x
switch