Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell98 |
Synopsis
- class Pretty a where
- pretty :: a -> Doc ann
- prettyList :: [a] -> Doc ann
- data SimpleDocStream ann
- = SFail
- | SEmpty
- | SChar !Char (SimpleDocStream ann)
- | SText !Int !Text (SimpleDocStream ann)
- | SLine !Int (SimpleDocStream ann)
- | SAnnPush ann (SimpleDocStream ann)
- | SAnnPop (SimpleDocStream ann)
- newtype LayoutOptions = LayoutOptions {}
- data PageWidth
- data FusionDepth
- (<>) :: Semigroup a => a -> a -> a
- group :: Doc ann -> Doc ann
- fill :: Int -> Doc ann -> Doc ann
- parens :: Doc ann -> Doc ann
- list :: [Doc ann] -> Doc ann
- (<+>) :: Doc ann -> Doc ann -> Doc ann
- annotate :: ann -> Doc ann -> Doc ann
- semi :: Doc ann
- comma :: Doc ann
- colon :: Doc ann
- space :: Doc ann
- equals :: Doc ann
- lparen :: Doc ann
- rparen :: Doc ann
- lbrace :: Doc ann
- rbrace :: Doc ann
- brackets :: Doc ann -> Doc ann
- braces :: Doc ann -> Doc ann
- hcat :: [Doc ann] -> Doc ann
- hsep :: [Doc ann] -> Doc ann
- vcat :: [Doc ann] -> Doc ann
- nest :: Int -> Doc ann -> Doc ann
- hang :: Int -> Doc ann -> Doc ann
- punctuate :: Doc ann -> [Doc ann] -> [Doc ann]
- sep :: [Doc ann] -> Doc ann
- cat :: [Doc ann] -> Doc ann
- indent :: Int -> Doc ann -> Doc ann
- viaShow :: Show a => a -> Doc ann
- unsafeViaShow :: Show a => a -> Doc ann
- emptyDoc :: Doc ann
- line :: Doc ann
- line' :: Doc ann
- softline :: Doc ann
- softline' :: Doc ann
- hardline :: Doc ann
- flatAlt :: Doc ann -> Doc ann -> Doc ann
- align :: Doc ann -> Doc ann
- encloseSep :: Doc ann -> Doc ann -> Doc ann -> [Doc ann] -> Doc ann
- tupled :: [Doc ann] -> Doc ann
- concatWith :: Foldable t => (Doc ann -> Doc ann -> Doc ann) -> t (Doc ann) -> Doc ann
- vsep :: [Doc ann] -> Doc ann
- fillSep :: [Doc ann] -> Doc ann
- fillCat :: [Doc ann] -> Doc ann
- column :: (Int -> Doc ann) -> Doc ann
- nesting :: (Int -> Doc ann) -> Doc ann
- width :: Doc ann -> (Int -> Doc ann) -> Doc ann
- pageWidth :: (PageWidth -> Doc ann) -> Doc ann
- fillBreak :: Int -> Doc ann -> Doc ann
- plural :: (Num amount, Eq amount) => doc -> doc -> amount -> doc
- enclose :: Doc ann -> Doc ann -> Doc ann -> Doc ann
- surround :: Doc ann -> Doc ann -> Doc ann -> Doc ann
- unAnnotate :: Doc ann -> Doc xxx
- reAnnotate :: (ann -> ann') -> Doc ann -> Doc ann'
- alterAnnotations :: (ann -> [ann']) -> Doc ann -> Doc ann'
- unAnnotateS :: SimpleDocStream ann -> SimpleDocStream xxx
- reAnnotateS :: (ann -> ann') -> SimpleDocStream ann -> SimpleDocStream ann'
- alterAnnotationsS :: (ann -> Maybe ann') -> SimpleDocStream ann -> SimpleDocStream ann'
- fuse :: FusionDepth -> Doc ann -> Doc ann
- removeTrailingWhitespace :: SimpleDocStream ann -> SimpleDocStream ann
- defaultLayoutOptions :: LayoutOptions
- layoutPretty :: LayoutOptions -> Doc ann -> SimpleDocStream ann
- layoutSmart :: LayoutOptions -> Doc ann -> SimpleDocStream ann
- layoutCompact :: Doc ann1 -> SimpleDocStream ann2
- squotes :: Doc ann -> Doc ann
- dquotes :: Doc ann -> Doc ann
- angles :: Doc ann -> Doc ann
- squote :: Doc ann
- dquote :: Doc ann
- langle :: Doc ann
- rangle :: Doc ann
- lbracket :: Doc ann
- rbracket :: Doc ann
- dot :: Doc ann
- slash :: Doc ann
- backslash :: Doc ann
- pipe :: Doc ann
- module Prettyprinter.Render.Terminal
- type Doc = Doc AnsiStyle
- type SimpleDoc = SimpleDocStream AnsiStyle
- (.$.) :: Doc -> Doc -> Doc
- (</>) :: Doc -> Doc -> Doc
- groupOrNestLine :: Doc -> Doc
- altSep :: Doc -> Doc -> Doc
- hangAtIfOver :: Int -> Int -> Doc -> Doc
- prettyString :: Double -> Int -> Doc -> String
Documentation
>>>
pretty 1 <+> pretty "hello" <+> pretty 1.234
1 hello 1.234
prettyList :: [a] -> Doc ann #
is only used to define the prettyList
instance
. In normal circumstances only the Pretty
a => Pretty
[a]
function is used.pretty
>>>
prettyList [1, 23, 456]
[1, 23, 456]
Instances
Pretty Void | Finding a good example for printing something that does not exist is hard, so here is an example of printing a list full of nothing.
|
Defined in Prettyprinter.Internal | |
Pretty Int16 | |
Defined in Prettyprinter.Internal | |
Pretty Int32 | |
Defined in Prettyprinter.Internal | |
Pretty Int64 | |
Defined in Prettyprinter.Internal | |
Pretty Int8 | |
Defined in Prettyprinter.Internal | |
Pretty Word16 | |
Defined in Prettyprinter.Internal | |
Pretty Word32 | |
Defined in Prettyprinter.Internal | |
Pretty Word64 | |
Defined in Prettyprinter.Internal | |
Pretty Word8 | |
Defined in Prettyprinter.Internal | |
Pretty Text | Automatically converts all newlines to
Note that
Manually use |
Defined in Prettyprinter.Internal | |
Pretty Text | (lazy |
Defined in Prettyprinter.Internal | |
Pretty Integer |
|
Defined in Prettyprinter.Internal | |
Pretty Natural | |
Defined in Prettyprinter.Internal | |
Pretty () |
The argument is not used:
|
Defined in Prettyprinter.Internal | |
Pretty Bool |
|
Defined in Prettyprinter.Internal | |
Pretty Char | Instead of
|
Defined in Prettyprinter.Internal | |
Pretty Double |
|
Defined in Prettyprinter.Internal | |
Pretty Float |
|
Defined in Prettyprinter.Internal | |
Pretty Int |
|
Defined in Prettyprinter.Internal | |
Pretty Word | |
Defined in Prettyprinter.Internal | |
Pretty a => Pretty (Identity a) |
|
Defined in Prettyprinter.Internal | |
Pretty a => Pretty (NonEmpty a) | |
Defined in Prettyprinter.Internal | |
Pretty a => Pretty (Maybe a) | Ignore
|
Defined in Prettyprinter.Internal | |
Pretty a => Pretty [a] |
|
Defined in Prettyprinter.Internal | |
(Pretty a1, Pretty a2) => Pretty (a1, a2) |
|
Defined in Prettyprinter.Internal | |
Pretty a => Pretty (Const a b) | |
Defined in Prettyprinter.Internal | |
(Pretty a1, Pretty a2, Pretty a3) => Pretty (a1, a2, a3) |
|
Defined in Prettyprinter.Internal |
data SimpleDocStream ann #
The data type SimpleDocStream
represents laid out documents and is used
by the display functions.
A simplified view is that
, and the layout
functions pick one of the Doc
= [SimpleDocStream
]SimpleDocStream
s based on which one fits the
layout constraints best. This means that SimpleDocStream
has all complexity
contained in Doc
resolved, making it very easy to convert it to other
formats, such as plain text or terminal output.
To write your own
to X converter, it is therefore sufficient to
convert from Doc
. The »Render« submodules provide some
built-in converters to do so, and helpers to create own ones.SimpleDocStream
SFail | |
SEmpty | |
SChar !Char (SimpleDocStream ann) | |
SText !Int !Text (SimpleDocStream ann) | |
SLine !Int (SimpleDocStream ann) |
|
SAnnPush ann (SimpleDocStream ann) | Add an annotation to the remaining document. |
SAnnPop (SimpleDocStream ann) | Remove a previously pushed annotation. |
Instances
newtype LayoutOptions #
Options to influence the layout algorithms.
Instances
Show LayoutOptions | |
Defined in Prettyprinter.Internal showsPrec :: Int -> LayoutOptions -> ShowS # show :: LayoutOptions -> String # showList :: [LayoutOptions] -> ShowS # | |
Eq LayoutOptions | |
Defined in Prettyprinter.Internal (==) :: LayoutOptions -> LayoutOptions -> Bool # (/=) :: LayoutOptions -> LayoutOptions -> Bool # | |
Ord LayoutOptions | |
Defined in Prettyprinter.Internal compare :: LayoutOptions -> LayoutOptions -> Ordering # (<) :: LayoutOptions -> LayoutOptions -> Bool # (<=) :: LayoutOptions -> LayoutOptions -> Bool # (>) :: LayoutOptions -> LayoutOptions -> Bool # (>=) :: LayoutOptions -> LayoutOptions -> Bool # max :: LayoutOptions -> LayoutOptions -> LayoutOptions # min :: LayoutOptions -> LayoutOptions -> LayoutOptions # |
Maximum number of characters that fit in one line. The layout algorithms
will try not to exceed the set limit by inserting line breaks when applicable
(e.g. via softline'
).
AvailablePerLine !Int !Double | Layouters should not exceed the specified space per line.
|
Unbounded | Layouters should not introduce line breaks on their own. |
data FusionDepth #
Fusion depth parameter, used by fuse
.
Shallow | Do not dive deep into nested documents, fusing mostly concatenations of text nodes together. |
Deep | Recurse into all parts of the This value should only be used if profiling shows it is significantly
faster than using |
Instances
Show FusionDepth | |
Defined in Prettyprinter.Internal showsPrec :: Int -> FusionDepth -> ShowS # show :: FusionDepth -> String # showList :: [FusionDepth] -> ShowS # | |
Eq FusionDepth | |
Defined in Prettyprinter.Internal (==) :: FusionDepth -> FusionDepth -> Bool # (/=) :: FusionDepth -> FusionDepth -> Bool # | |
Ord FusionDepth | |
Defined in Prettyprinter.Internal compare :: FusionDepth -> FusionDepth -> Ordering # (<) :: FusionDepth -> FusionDepth -> Bool # (<=) :: FusionDepth -> FusionDepth -> Bool # (>) :: FusionDepth -> FusionDepth -> Bool # (>=) :: FusionDepth -> FusionDepth -> Bool # max :: FusionDepth -> FusionDepth -> FusionDepth # min :: FusionDepth -> FusionDepth -> FusionDepth # |
(<>) :: Semigroup a => a -> a -> a infixr 6 #
An associative operation.
Examples
>>>
[1,2,3] <> [4,5,6]
[1,2,3,4,5,6]
>>>
Just [1, 2, 3] <> Just [4, 5, 6]
Just [1,2,3,4,5,6]
>>>
putStr "Hello, " <> putStrLn "World!"
Hello, World!
(
tries laying out group
x)x
into a single line by removing the
contained line breaks; if this does not fit the page, or when a hardline
within x
prevents it from being flattened, x
is laid out without any
changes.
The group
function is key to layouts that adapt to available space nicely.
See vcat
, line
, or flatAlt
for examples that are related, or make good
use of it.
(
lays out the document fill
i x)x
. It then appends space
s until
the width is equal to i
. If the width of x
is already larger, nothing is
appended.
This function is quite useful in practice to output a list of bindings:
>>>
let types = [("empty","Doc"), ("nest","Int -> Doc -> Doc"), ("fillSep","[Doc] -> Doc")]
>>>
let ptype (name, tp) = fill 5 (pretty name) <+> "::" <+> pretty tp
>>>
"let" <+> align (vcat (map ptype types))
let empty :: Doc nest :: Int -> Doc -> Doc fillSep :: [Doc] -> Doc
list :: [Doc ann] -> Doc ann #
Haskell-inspired variant of encloseSep
with braces and comma as
separator.
>>>
let doc = list (map pretty [1,20,300,4000])
>>>
putDocW 80 doc
[1, 20, 300, 4000]
>>>
putDocW 10 doc
[ 1 , 20 , 300 , 4000 ]
annotate :: ann -> Doc ann -> Doc ann #
Add an annotation to a
. This annotation can then be used by the
renderer to e.g. add color to certain parts of the output. For a full
tutorial example on how to use it, see the
Prettyprinter.Render.Tutorials.StackMachineTutorial or
Prettyprinter.Render.Tutorials.TreeRenderingTutorial modules.Doc
This function is only relevant for custom formats with their own annotations, and not relevant for basic prettyprinting. The predefined renderers, e.g. Prettyprinter.Render.Text, should be enough for the most common needs.
hsep :: [Doc ann] -> Doc ann #
(
concatenates all documents hsep
xs)xs
horizontally with
,
i.e. it puts a space between all entries.<+>
>>>
let docs = Util.words "lorem ipsum dolor sit amet"
>>>
hsep docs
lorem ipsum dolor sit amet
does not introduce line breaks on its own, even when the page is too
narrow:hsep
>>>
putDocW 5 (hsep docs)
lorem ipsum dolor sit amet
For automatic line breaks, consider using fillSep
instead.
vcat :: [Doc ann] -> Doc ann #
(
vertically concatenates the documents vcat
xs)xs
. If it is
group
ed, the line breaks are removed.
In other words
is like vcat
, with newlines removed instead of
replaced by vsep
space
s.
>>>
let docs = Util.words "lorem ipsum dolor"
>>>
vcat docs
lorem ipsum dolor>>>
group (vcat docs)
loremipsumdolor
Since group
ing a vcat
is rather common, cat
is a built-in shortcut for
it.
(
lays out the document nest
i x)x
with the current nesting level
(indentation of the following lines) increased by i
. Negative values are
allowed, and decrease the nesting level accordingly.
>>>
vsep [nest 4 (vsep ["lorem", "ipsum", "dolor"]), "sit", "amet"]
lorem ipsum dolor sit amet
See also
(
lays out the document hang
i x)x
with a nesting level set to the
current column plus i
. Negative values are allowed, and decrease the
nesting level accordingly.
>>>
let doc = reflow "Indenting these words with hang"
>>>
putDocW 24 ("prefix" <+> hang 4 doc)
prefix Indenting these words with hang
This differs from nest
, which is based on the current nesting level plus
i
. When you're not sure, try the more efficient nest
first. In our
example, this would yield
>>>
let doc = reflow "Indenting these words with nest"
>>>
putDocW 24 ("prefix" <+> nest 4 doc)
prefix Indenting these words with nest
hang
i doc =align
(nest
i doc)
(
appends punctuate
p xs)p
to all but the last document in xs
.
>>>
let docs = punctuate comma (Util.words "lorem ipsum dolor sit amet")
>>>
putDocW 80 (hsep docs)
lorem, ipsum, dolor, sit, amet
The separators are put at the end of the entries, which we can see if we position the result vertically:
>>>
putDocW 20 (vsep docs)
lorem, ipsum, dolor, sit, amet
If you want put the commas in front of their elements instead of at the end,
you should use tupled
or, in general, encloseSep
.
(
tries laying out the documents sep
xs)xs
separated with space
s,
and if this does not fit the page, separates them with newlines. This is what
differentiates it from vsep
, which always lays out its contents beneath
each other.
>>>
let doc = "prefix" <+> sep ["text", "to", "lay", "out"]
>>>
putDocW 80 doc
prefix text to lay out
With a narrower layout, the entries are separated by newlines:
>>>
putDocW 20 doc
prefix text to lay out
sep
=group
.vsep
(
tries laying out the documents cat
xs)xs
separated with nothing,
and if this does not fit the page, separates them with newlines. This is what
differentiates it from vcat
, which always lays out its contents beneath
each other.
>>>
let docs = Util.words "lorem ipsum dolor"
>>>
putDocW 80 ("Docs:" <+> cat docs)
Docs: loremipsumdolor
When there is enough space, the documents are put above one another:
>>>
putDocW 10 ("Docs:" <+> cat docs)
Docs: lorem ipsum dolor
cat
=group
.vcat
viaShow :: Show a => a -> Doc ann #
Convenience function to convert a Show
able value to a Doc
. If the
String
does not contain newlines, consider using the more performant
unsafeViaShow
.
unsafeViaShow :: Show a => a -> Doc ann #
softline
behaves like
if the resulting output fits the page,
otherwise like space
.line
Here, we have enough space to put everything in one line:
>>>
let doc = "lorem ipsum" <> softline <> "dolor sit amet"
>>>
putDocW 80 doc
lorem ipsum dolor sit amet
If we narrow the page to width 10, the layouter produces a line break:
>>>
putDocW 10 doc
lorem ipsum dolor sit amet
softline
=group
line
is like softline'
, but behaves like softline
if the
resulting output does not fit on the page (instead of mempty
). In other
words, space
is to line
how line'
is to softline
.softline'
With enough space, we get direct concatenation:
>>>
let doc = "ThisWord" <> softline' <> "IsWayTooLong"
>>>
putDocW 80 doc
ThisWordIsWayTooLong
If we narrow the page to width 10, the layouter produces a line break:
>>>
putDocW 10 doc
ThisWord IsWayTooLong
softline'
=group
line'
A
is always laid out as a line break, even when hardline
group
ed or
when there is plenty of space. Note that it might still be simply discarded
if it is part of a flatAlt
inside a group
.
>>>
let doc = "lorem ipsum" <> hardline <> "dolor sit amet"
>>>
putDocW 1000 doc
lorem ipsum dolor sit amet
>>>
group doc
lorem ipsum dolor sit amet
By default, (
renders as flatAlt
x y)x
. However when group
ed,
y
will be preferred, with x
as the fallback for the case when y
doesn't fit.
>>>
let doc = flatAlt "a" "b"
>>>
putDoc doc
a>>>
putDoc (group doc)
b>>>
putDocW 0 (group doc)
a
flatAlt
is particularly useful for defining conditional separators such as
softline =group
(flatAlt
hardline
" ")
>>>
let hello = "Hello" <> softline <> "world!"
>>>
putDocW 12 hello
Hello world!>>>
putDocW 11 hello
Hello world!
Example: Haskell's do-notation
We can use this to render Haskell's do-notation nicely:
>>>
let open = flatAlt "" "{ "
>>>
let close = flatAlt "" " }"
>>>
let separator = flatAlt "" "; "
>>>
let prettyDo xs = group ("do" <+> align (encloseSep open close separator xs))
>>>
let statements = ["name:_ <- getArgs", "let greet = \"Hello, \" <> name", "putStrLn greet"]
This is put into a single line with {;}
style if it fits:
>>>
putDocW 80 (prettyDo statements)
do { name:_ <- getArgs; let greet = "Hello, " <> name; putStrLn greet }
When there is not enough space the statements are broken up into lines nicely:
>>>
putDocW 10 (prettyDo statements)
do name:_ <- getArgs let greet = "Hello, " <> name putStrLn greet
Notes
Users should be careful to choose x
to be less wide than y
.
Otherwise, if y
turns out not to fit the page, we fall back on an even
wider layout:
>>>
let ugly = group (flatAlt "even wider" "too wide")
>>>
putDocW 7 ugly
even wider
Also note that group
will flatten y
:
>>>
putDoc (group (flatAlt "x" ("y" <> line <> "y")))
y y
This also means that an "unflattenable" y
which contains a hard linebreak
will never be rendered:
>>>
putDoc (group (flatAlt "x" ("y" <> hardline <> "y")))
x
(
lays out the document align
x)x
with the nesting level set to the
current column. It is used for example to implement hang
.
As an example, we will put a document right above another one, regardless of
the current nesting level. Without align
ment, the second line is put simply
below everything we've had so far:
>>>
"lorem" <+> vsep ["ipsum", "dolor"]
lorem ipsum dolor
If we add an align
to the mix, the
's contents all start in the
same column:vsep
>>>
"lorem" <+> align (vsep ["ipsum", "dolor"])
lorem ipsum dolor
:: Doc ann | left delimiter |
-> Doc ann | right delimiter |
-> Doc ann | separator |
-> [Doc ann] | input documents |
-> Doc ann |
(
concatenates the documents encloseSep
l r sep xs)xs
separated by
sep
, and encloses the resulting document by l
and r
.
The documents are laid out horizontally if that fits the page:
>>>
let doc = "list" <+> align (encloseSep lbracket rbracket comma (map pretty [1,20,300,4000]))
>>>
putDocW 80 doc
list [1,20,300,4000]
If there is not enough space, then the input is split into lines entry-wise therwise they are laid out vertically, with separators put in the front:
>>>
putDocW 10 doc
list [1 ,20 ,300 ,4000]
Note that doc
contains an explicit call to align
so that the list items
are aligned vertically.
For putting separators at the end of entries instead, have a look at
punctuate
.
tupled :: [Doc ann] -> Doc ann #
Haskell-inspired variant of encloseSep
with parentheses and comma as
separator.
>>>
let doc = tupled (map pretty [1,20,300,4000])
>>>
putDocW 80 doc
(1, 20, 300, 4000)
>>>
putDocW 10 doc
( 1 , 20 , 300 , 4000 )
concatWith :: Foldable t => (Doc ann -> Doc ann -> Doc ann) -> t (Doc ann) -> Doc ann #
Concatenate all documents element-wise with a binary function.
concatWith
_ [] =mempty
concatWith
(**) [x,y,z] = x ** y ** z
Multiple convenience definitions based on concatWith
are already predefined,
for example:
hsep
=concatWith
(<+>
)fillSep
=concatWith
(\x y -> x<>
softline
<>
y)
This is also useful to define customized joiners:
>>>
concatWith (surround dot) ["Prettyprinter", "Render", "Text"]
Prettyprinter.Render.Text
vsep :: [Doc ann] -> Doc ann #
(
concatenates all documents vsep
xs)xs
above each other. If a
group
undoes the line breaks inserted by vsep
, the documents are
separated with a space
instead.
Using vsep
alone yields
>>>
"prefix" <+> vsep ["text", "to", "lay", "out"]
prefix text to lay out
group
ing a vsep
separates the documents with a space
if it fits the
page (and does nothing otherwise). See the
convenience function for
this use case.sep
The align
function can be used to align the documents under their first
element:
>>>
"prefix" <+> align (vsep ["text", "to", "lay", "out"])
prefix text to lay out
Since group
ing a vsep
is rather common, sep
is a built-in for doing
that.
fillSep :: [Doc ann] -> Doc ann #
(
concatenates the documents fillSep
xs)xs
horizontally with
as long as it fits the page, then inserts a <+>
and continues doing that
for all documents in line
xs
. (
means that if line
group
ed, the documents
are separated with a space
instead of newlines. Use fillCat
if you do not
want a space
.)
Let's print some words to fill the line:
>>>
let docs = take 20 (cycle ["lorem", "ipsum", "dolor", "sit", "amet"])
>>>
putDocW 80 ("Docs:" <+> fillSep docs)
Docs: lorem ipsum dolor sit amet lorem ipsum dolor sit amet lorem ipsum dolor sit amet lorem ipsum dolor sit amet
The same document, printed at a width of only 40, yields
>>>
putDocW 40 ("Docs:" <+> fillSep docs)
Docs: lorem ipsum dolor sit amet lorem ipsum dolor sit amet lorem ipsum dolor sit amet lorem ipsum dolor sit amet
fillCat :: [Doc ann] -> Doc ann #
(
concatenates documents fillCat
xs)xs
horizontally with
as
long as it fits the page, then inserts a <>
and continues doing that
for all documents in line'
xs
. This is similar to how an ordinary word processor
lays out the text if you just keep typing after you hit the maximum line
length.
(
means that if line'
group
ed, the documents are separated with nothing
instead of newlines. See fillSep
if you want a space
instead.)
Observe the difference between fillSep
and fillCat
. fillSep
concatenates the entries space
d when group
ed:
>>>
let docs = take 20 (cycle (["lorem", "ipsum", "dolor", "sit", "amet"]))
>>>
putDocW 40 ("Grouped:" <+> group (fillSep docs))
Grouped: lorem ipsum dolor sit amet lorem ipsum dolor sit amet lorem ipsum dolor sit amet lorem ipsum dolor sit amet
On the other hand, fillCat
concatenates the entries directly when
group
ed:
>>>
putDocW 40 ("Grouped:" <+> group (fillCat docs))
Grouped: loremipsumdolorsitametlorem ipsumdolorsitametloremipsumdolorsitamet loremipsumdolorsitamet
column :: (Int -> Doc ann) -> Doc ann #
Layout a document depending on which column it starts at. align
is
implemented in terms of column
.
>>>
column (\l -> "Columns are" <+> pretty l <> "-based.")
Columns are 0-based.
>>>
let doc = "prefix" <+> column (\l -> "| <- column" <+> pretty l)
>>>
vsep [indent n doc | n <- [0,4,8]]
prefix | <- column 7 prefix | <- column 11 prefix | <- column 15
width :: Doc ann -> (Int -> Doc ann) -> Doc ann #
(
lays out the document width
doc f)doc
, and makes the column width
of it available to a function.
>>>
let annotate doc = width (brackets doc) (\w -> " <- width:" <+> pretty w)
>>>
align (vsep (map annotate ["---", "------", indent 3 "---", vsep ["---", indent 4 "---"]]))
[---] <- width: 5 [------] <- width: 8 [ ---] <- width: 8 [--- ---] <- width: 8
pageWidth :: (PageWidth -> Doc ann) -> Doc ann #
Layout a document depending on the page width, if one has been specified.
>>>
let prettyPageWidth (AvailablePerLine l r) = "Width:" <+> pretty l <> ", ribbon fraction:" <+> pretty r
>>>
let doc = "prefix" <+> pageWidth (brackets . prettyPageWidth)
>>>
putDocW 32 (vsep [indent n doc | n <- [0,4,8]])
prefix [Width: 32, ribbon fraction: 1.0] prefix [Width: 32, ribbon fraction: 1.0] prefix [Width: 32, ribbon fraction: 1.0]
(
first lays out the document fillBreak
i x)x
. It then appends space
s
until the width is equal to i
. If the width of x
is already larger than
i
, the nesting level is increased by i
and a line
is appended. When we
redefine ptype
in the example given in fill
to use
, we get
a useful variation of the output:fillBreak
>>>
let types = [("empty","Doc"), ("nest","Int -> Doc -> Doc"), ("fillSep","[Doc] -> Doc")]
>>>
let ptype (name, tp) = fillBreak 5 (pretty name) <+> "::" <+> pretty tp
>>>
"let" <+> align (vcat (map ptype types))
let empty :: Doc nest :: Int -> Doc -> Doc fillSep :: [Doc] -> Doc
(
is plural
n one many)one
if n
is 1
, and many
otherwise. A
typical use case is adding a plural "s".
>>>
let things = [True]
>>>
let amount = length things
>>>
pretty things <+> "has" <+> pretty amount <+> plural "entry" "entries" amount
[True] has 1 entry
unAnnotate :: Doc ann -> Doc xxx #
Remove all annotations.
Although unAnnotate
is idempotent with respect to rendering,
unAnnotate
.unAnnotate
=unAnnotate
it should not be used without caution, for each invocation traverses the
entire contained document. If possible, it is preferrable to unannotate after
producing the layout by using unAnnotateS
.
reAnnotate :: (ann -> ann') -> Doc ann -> Doc ann' #
Change the annotation of a Doc
ument.
Useful in particular to embed documents with one form of annotation in a more generally annotated document.
Since this traverses the entire
tree, including parts that are not
rendered due to other layouts fitting better, it is preferrable to reannotate
after producing the layout by using Doc
.reAnnotateS
Since
has the right type and satisfies reAnnotate
'reAnnotate id = id'
,
it is used to define the
instance of Functor
.Doc
alterAnnotations :: (ann -> [ann']) -> Doc ann -> Doc ann' #
Change the annotations of a Doc
ument. Individual annotations can be
removed, changed, or replaced by multiple ones.
This is a general function that combines unAnnotate
and reAnnotate
, and
it is useful for mapping semantic annotations (such as »this is a keyword«)
to display annotations (such as »this is red and underlined«), because some
backends may not care about certain annotations, while others may.
Annotations earlier in the new list will be applied earlier, i.e. returning
[Bold, Green]
will result in a bold document that contains green text, and
not vice-versa.
Since this traverses the entire
tree, including parts that are not
rendered due to other layouts fitting better, it is preferrable to reannotate
after producing the layout by using Doc
.alterAnnotationsS
unAnnotateS :: SimpleDocStream ann -> SimpleDocStream xxx #
Remove all annotations. unAnnotate
for SimpleDocStream
.
reAnnotateS :: (ann -> ann') -> SimpleDocStream ann -> SimpleDocStream ann' #
Change the annotation of a document. reAnnotate
for SimpleDocStream
.
alterAnnotationsS :: (ann -> Maybe ann') -> SimpleDocStream ann -> SimpleDocStream ann' #
Change the annotation of a document to a different annotation, or none at
all. alterAnnotations
for SimpleDocStream
.
Note that the Doc
version is more flexible, since it allows changing a
single annotation to multiple ones.
(SimpleDocTree
restores
this flexibility again.)
fuse :: FusionDepth -> Doc ann -> Doc ann #
(
combines text nodes so they can be rendered more
efficiently. A fused document is always laid out identical to its unfused
version.fuse
depth doc)
When laying a Doc
ument out to a SimpleDocStream
, every component of the
input is translated directly to the simpler output format. This sometimes
yields undesirable chunking when many pieces have been concatenated together.
For example
>>>
"a" <> "b" <> pretty 'c' <> "d"
abcd
results in a chain of four entries in a SimpleDocStream
, although this is fully
equivalent to the tightly packed
>>>
"abcd" :: Doc ann
abcd
which is only a single SimpleDocStream
entry, and can be processed faster.
It is therefore a good idea to run fuse
on concatenations of lots of small
strings that are used many times:
>>>
let oftenUsed = fuse Shallow ("a" <> "b" <> pretty 'c' <> "d")
>>>
hsep (replicate 5 oftenUsed)
abcd abcd abcd abcd abcd
removeTrailingWhitespace :: SimpleDocStream ann -> SimpleDocStream ann #
Remove all trailing space characters.
This has some performance impact, because it does an entire additional pass
over the SimpleDocStream
.
No trimming will be done inside annotations, which are considered to contain
no (trimmable) whitespace, since the annotation might actually be about the
whitespace, for example a renderer that colors the background of trailing
whitespace, as e.g. git diff
can be configured to do.
Historical note: Since v1.7.0, layoutPretty
and layoutSmart
avoid
producing the trailing whitespace that was the original motivation for
creating removeTrailingWhitespace
.
See https://github.com/quchen/prettyprinter/pull/139 for some background
info.
defaultLayoutOptions :: LayoutOptions #
The default layout options, suitable when you just want some output, and
don’t particularly care about the details. Used by the Show
instance, for
example.
>>>
defaultLayoutOptions
LayoutOptions {layoutPageWidth = AvailablePerLine 80 1.0}
layoutPretty :: LayoutOptions -> Doc ann -> SimpleDocStream ann #
This is the default layout algorithm, and it is used by show
, putDoc
and hPutDoc
.
commits to rendering something in a certain way if the next
element fits the layout constraints; in other words, it has one
layoutPretty
SimpleDocStream
element lookahead when rendering. Consider using the
smarter, but a bit less performant,
algorithm if the results
seem to run off to the right before having lots of line breaks.layoutSmart
layoutSmart :: LayoutOptions -> Doc ann -> SimpleDocStream ann #
A layout algorithm with more lookahead than layoutPretty
, that introduces
line breaks earlier if the content does not (or will not, rather) fit into
one line.
Consider the following python-ish document,
>>>
let fun x = hang 2 ("fun(" <> softline' <> x) <> ")"
>>>
let doc = (fun . fun . fun . fun . fun) (align (list ["abcdef", "ghijklm"]))
which we’ll be rendering using the following pipeline (where the layout algorithm has been left open):
>>>
import Data.Text.IO as T
>>>
import Prettyprinter.Render.Text
>>>
let hr = pipe <> pretty (replicate (26-2) '-') <> pipe
>>>
let go layouter x = (T.putStrLn . renderStrict . layouter (LayoutOptions (AvailablePerLine 26 1))) (vsep [hr, x, hr])
If we render this using layoutPretty
with a page width of 26 characters
per line, all the fun
calls fit into the first line so they will be put
there:
>>>
go layoutPretty doc
|------------------------| fun(fun(fun(fun(fun( [ abcdef , ghijklm ]))))) |------------------------|
Note that this exceeds the desired 26 character page width. The same
document, rendered with
, fits the layout contstraints:layoutSmart
>>>
go layoutSmart doc
|------------------------| fun( fun( fun( fun( fun( [ abcdef , ghijklm ]))))) |------------------------|
The key difference between layoutPretty
and layoutSmart
is that the
latter will check the potential document until it encounters a line with the
same indentation or less than the start of the document. Any line encountered
earlier is assumed to belong to the same syntactic structure.
layoutPretty
checks only the first line.
Consider for example the question of whether the A
s fit into the document
below:
1 A 2 A 3 A 4 B 5 B
layoutPretty
will check only line 1, ignoring whether e.g. line 2 might
already be too wide.
By contrast, layoutSmart
stops only once it reaches line 4, where the B
has the same indentation as the first A
.
layoutCompact :: Doc ann1 -> SimpleDocStream ann2 #
(layoutCompact x)
lays out the document x
without adding any
indentation and without preserving annotations.
Since no 'pretty' printing is involved, this layouter is very
fast. The resulting output contains fewer characters than a prettyprinted
version and can be used for output that is read by other programs.
>>>
let doc = hang 4 (vsep ["lorem", "ipsum", hang 4 (vsep ["dolor", "sit"])])
>>>
doc
lorem ipsum dolor sit
>>>
let putDocCompact = renderIO System.IO.stdout . layoutCompact
>>>
putDocCompact doc
lorem ipsum dolor sit
type SimpleDoc = SimpleDocStream AnsiStyle Source #
groupOrNestLine :: Doc -> Doc Source #
Render flattened text on this line, or start a new line before rendering any text.
This will also nest subsequent lines in the group.
altSep :: Doc -> Doc -> Doc Source #
Separate items in an alternative with a pipe.
If the first document and the pipe don't fit on the line, then mandatorily flow the next entry onto the following line.
The (//) softbreak ensures that if the document does fit on the line, there is at least a space, but it's possible for y to still appear on the next line.
hangAtIfOver :: Int -> Int -> Doc -> Doc Source #
Printer hacks to get nice indentation for long commands and subcommands.
If we're starting this section over the desired width (usually 1/3 of the ribbon), then we will make a line break, indent all of the usage, and go.
The ifAtRoot is an interesting clause. If this whole
operation is put under a group
then the linebreak
will disappear; then item d will therefore not be at
the starting column, and it won't be indented more.