{-# OPTIONS_HADDOCK not-home #-}
module Optics.Internal.IxTraversal where
import Data.Profunctor.Indexed
import Optics.Internal.Fold
import Optics.Internal.Indexed.Classes
import Optics.Internal.IxFold
import Optics.Internal.IxSetter
import Optics.Internal.Optic
import Optics.Internal.Setter
itraversed__
:: (Traversing p, TraversableWithIndex i f)
=> Optic__ p j (i -> j) (f a) (f b) a b
itraversed__ :: forall (p :: * -> * -> * -> *) i (f :: * -> *) j a b.
(Traversing p, TraversableWithIndex i f) =>
Optic__ p j (i -> j) (f a) (f b) a b
itraversed__ = (p j a b -> p j (f a) (f b))
-> (p j a b -> p (i -> j) (f a) (f b))
-> p j a b
-> p (i -> j) (f a) (f b)
forall i a b s t j.
(p i a b -> p i s t) -> (p i a b -> p j s t) -> p i a b -> p j s t
forall (p :: * -> * -> * -> *) i a b s t j.
Profunctor p =>
(p i a b -> p i s t) -> (p i a b -> p j s t) -> p i a b -> p j s t
conjoined__ ((forall (f :: * -> *).
Applicative f =>
(a -> f b) -> f a -> f (f b))
-> p j a b -> p j (f a) (f b)
forall a b s t i.
(forall (f :: * -> *). Applicative f => (a -> f b) -> s -> f t)
-> p i a b -> p i s t
forall (p :: * -> * -> * -> *) a b s t i.
Traversing p =>
(forall (f :: * -> *). Applicative f => (a -> f b) -> s -> f t)
-> p i a b -> p i s t
wander (a -> f b) -> f a -> f (f b)
forall (f :: * -> *). Applicative f => (a -> f b) -> f a -> f (f b)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> f a -> f (f b)
traverse) ((forall (f :: * -> *).
Applicative f =>
(i -> a -> f b) -> f a -> f (f b))
-> p j a b -> p (i -> j) (f a) (f b)
forall i a b s t j.
(forall (f :: * -> *).
Applicative f =>
(i -> a -> f b) -> s -> f t)
-> p j a b -> p (i -> j) s t
forall (p :: * -> * -> * -> *) i a b s t j.
Traversing p =>
(forall (f :: * -> *).
Applicative f =>
(i -> a -> f b) -> s -> f t)
-> p j a b -> p (i -> j) s t
iwander (i -> a -> f b) -> f a -> f (f b)
forall i (t :: * -> *) (f :: * -> *) a b.
(TraversableWithIndex i t, Applicative f) =>
(i -> a -> f b) -> t a -> f (t b)
forall (f :: * -> *).
Applicative f =>
(i -> a -> f b) -> f a -> f (f b)
forall (f :: * -> *) a b.
Applicative f =>
(i -> a -> f b) -> f a -> f (f b)
itraverse)
{-# INLINE [0] itraversed__ #-}
{-# RULES
"itraversed__ -> wander traverse"
forall (o :: Star g j a b). itraversed__ o = wander traverse (reStar o)
:: TraversableWithIndex i f => Star g (i -> j) (f a) (f b)
"itraversed__ -> folded__"
forall (o :: Forget r j a b). itraversed__ o = folded__ (reForget o)
:: FoldableWithIndex i f => Forget r (i -> j) (f a) (f b)
"itraversed__ -> mapped__"
forall (o :: FunArrow j a b). itraversed__ o = mapped__ (reFunArrow o)
:: FunctorWithIndex i f => FunArrow (i -> j) (f a) (f b)
"itraversed__ -> itraverse"
forall (o :: IxStar g j a b). itraversed__ o = iwander itraverse o
:: TraversableWithIndex i f => IxStar g (i -> j) (f a) (f b)
"itraversed__ -> ifolded__"
forall (o :: IxForget r j a b). itraversed__ o = ifolded__ o
:: FoldableWithIndex i f => IxForget r (i -> j) (f a) (f b)
"itraversed__ -> imapped__"
forall (o :: IxFunArrow j a b). itraversed__ o = imapped__ o
:: FunctorWithIndex i f => IxFunArrow (i -> j) (f a) (f b)
#-}