{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilyDependencies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

-- |
-- Module      : Data.Massiv.Core.Index.Ix
-- Copyright   : (c) Alexey Kuleshevich 2018-2022
-- License     : BSD3
-- Maintainer  : Alexey Kuleshevich <lehins@yandex.ru>
-- Stability   : experimental
-- Portability : non-portable
module Data.Massiv.Core.Index.Ix (
  Ix,
  IxN ((:>)),
  type Sz,
  pattern Sz,
  type Ix1,
  pattern Ix1,
  pattern Sz1,
  type Ix2 (Ix2, (:.)),
  pattern Sz2,
  type Ix3,
  pattern Ix3,
  pattern Sz3,
  type Ix4,
  pattern Ix4,
  pattern Sz4,
  type Ix5,
  pattern Ix5,
  pattern Sz5,
  HighIxN,
) where

import Control.DeepSeq
import Control.Monad.Catch (MonadThrow (..))
import Data.Massiv.Core.Index.Internal
import Data.Massiv.Core.Loop
import Data.Proxy
import qualified Data.Vector.Generic as V
import qualified Data.Vector.Generic.Mutable as VM
import qualified Data.Vector.Unboxed as VU
import qualified GHC.Arr as I
import GHC.TypeLits
import System.Random.Stateful
#if !MIN_VERSION_base(4,11,0)
import Data.Semigroup
#endif

infixr 5 :>, :.

-- | 2-dimensional index. This is also a base index for higher dimensions.
--
-- @since 0.1.0
data Ix2 = {-# UNPACK #-} !Int :. {-# UNPACK #-} !Int

-- | 2-dimensional index constructor. Useful when infix notation is inconvenient. @(Ix2 i j) == (i :. j)@
--
-- @since 0.1.0
pattern Ix2 :: Int -> Int -> Ix2
pattern $mIx2 :: forall {r}. Ix2 -> (Int -> Int -> r) -> ((# #) -> r) -> r
$bIx2 :: Int -> Int -> Ix2
Ix2 i2 i1 = i2 :. i1

{-# COMPLETE Ix2 #-}

-- | 2-dimensional size constructor. @(Sz2 i j) == Sz (i :. j)@
--
-- @since 0.3.0
pattern Sz2 :: Int -> Int -> Sz Ix2
pattern $mSz2 :: forall {r}. Sz Ix2 -> (Int -> Int -> r) -> ((# #) -> r) -> r
$bSz2 :: Int -> Int -> Sz Ix2
Sz2 i2 i1 = Sz (i2 :. i1)

{-# COMPLETE Sz2 #-}

-- | 3-dimensional type synonym. Useful as a alternative to enabling @DataKinds@ and using type
-- level Nats.
--
-- @since 0.1.0
type Ix3 = IxN 3

-- | 3-dimensional index constructor. @(Ix3 i j k) == (i :> j :. k)@
--
-- @since 0.1.0
pattern Ix3 :: Int -> Int -> Int -> Ix3
pattern $mIx3 :: forall {r}. Ix3 -> (Int -> Int -> Int -> r) -> ((# #) -> r) -> r
$bIx3 :: Int -> Int -> Int -> Ix3
Ix3 i3 i2 i1 = i3 :> i2 :. i1

{-# COMPLETE Ix3 #-}

-- | 3-dimensional size constructor. @(Sz3 i j k) == Sz (i :> j :. k)@
--
-- @since 0.3.0
pattern Sz3 :: Int -> Int -> Int -> Sz Ix3
pattern $mSz3 :: forall {r}. Sz Ix3 -> (Int -> Int -> Int -> r) -> ((# #) -> r) -> r
$bSz3 :: Int -> Int -> Int -> Sz Ix3
Sz3 i3 i2 i1 = Sz (i3 :> i2 :. i1)

{-# COMPLETE Sz3 #-}

-- | 4-dimensional type synonym.
--
-- @since 0.1.0
type Ix4 = IxN 4

-- | 4-dimensional index constructor. @(Ix4 i j k l) == (i :> j :> k :. l)@
--
-- @since 0.1.0
pattern Ix4 :: Int -> Int -> Int -> Int -> Ix4
pattern $mIx4 :: forall {r}.
Ix4 -> (Int -> Int -> Int -> Int -> r) -> ((# #) -> r) -> r
$bIx4 :: Int -> Int -> Int -> Int -> Ix4
Ix4 i4 i3 i2 i1 = i4 :> i3 :> i2 :. i1

{-# COMPLETE Ix4 #-}

-- | 4-dimensional size constructor. @(Sz4 i j k l) == Sz (i :> j :> k :. l)@
--
-- @since 0.3.0
pattern Sz4 :: Int -> Int -> Int -> Int -> Sz Ix4
pattern $mSz4 :: forall {r}.
Sz Ix4 -> (Int -> Int -> Int -> Int -> r) -> ((# #) -> r) -> r
$bSz4 :: Int -> Int -> Int -> Int -> Sz Ix4
Sz4 i4 i3 i2 i1 = Sz (i4 :> i3 :> i2 :. i1)

{-# COMPLETE Sz4 #-}

-- | 5-dimensional type synonym.
--
-- @since 0.1.0
type Ix5 = IxN 5

-- | 5-dimensional index constructor.  @(Ix5 i j k l m) == (i :> j :> k :> l :. m)@
--
-- @since 0.1.0
pattern Ix5 :: Int -> Int -> Int -> Int -> Int -> Ix5
pattern $mIx5 :: forall {r}.
Ix5 -> (Int -> Int -> Int -> Int -> Int -> r) -> ((# #) -> r) -> r
$bIx5 :: Int -> Int -> Int -> Int -> Int -> Ix5
Ix5 i5 i4 i3 i2 i1 = i5 :> i4 :> i3 :> i2 :. i1

{-# COMPLETE Ix5 #-}

-- | 5-dimensional size constructor.  @(Sz5 i j k l m) == Sz (i :> j :> k :> l :. m)@
--
-- @since 0.3.0
pattern Sz5 :: Int -> Int -> Int -> Int -> Int -> Sz Ix5
pattern $mSz5 :: forall {r}.
Sz Ix5
-> (Int -> Int -> Int -> Int -> Int -> r) -> ((# #) -> r) -> r
$bSz5 :: Int -> Int -> Int -> Int -> Int -> Sz Ix5
Sz5 i5 i4 i3 i2 i1 = Sz (i5 :> i4 :> i3 :> i2 :. i1)

{-# COMPLETE Sz5 #-}

-- | n-dimensional index. Needs a base case, which is the `Ix2`.
--
-- @since 0.1.0
data IxN (n :: Nat) = {-# UNPACK #-} !Int :> !(Ix (n - 1))

-- | Defines n-dimensional index by relating a general `IxN` with few base cases.
--
-- @since 0.1.0
type family Ix (n :: Nat) = r | r -> n where
  Ix 0 = Ix0
  Ix 1 = Ix1
  Ix 2 = Ix2
  Ix n = IxN n

type instance Lower Ix2 = Ix1
type instance Lower (IxN n) = Ix (n - 1)

instance Show Ix2 where
  showsPrec :: Int -> Ix2 -> ShowS
showsPrec Int
n (Int
i :. Int
j) = Int -> ShowS -> ShowS
showsPrecWrapped Int
n (Int -> ShowS
forall a. Show a => a -> ShowS
shows Int
i ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (String
" :. " String -> ShowS
forall a. [a] -> [a] -> [a]
++) ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> ShowS
forall a. Show a => a -> ShowS
shows Int
j)

instance Show (Ix (n - 1)) => Show (IxN n) where
  showsPrec :: Int -> IxN n -> ShowS
showsPrec Int
n (Int
i :> Ix (n - 1)
ix) = Int -> ShowS -> ShowS
showsPrecWrapped Int
n (Int -> ShowS
forall a. Show a => a -> ShowS
shows Int
i ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (String
" :> " String -> ShowS
forall a. [a] -> [a] -> [a]
++) ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ix (n - 1) -> ShowS
forall a. Show a => a -> ShowS
shows Ix (n - 1)
ix)

instance Uniform Ix2 where
  uniformM :: forall g (m :: * -> *). StatefulGen g m => g -> m Ix2
uniformM g
g = Int -> Int -> Ix2
(:.) (Int -> Int -> Ix2) -> m Int -> m (Int -> Ix2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> g -> m Int
forall a g (m :: * -> *). (Uniform a, StatefulGen g m) => g -> m a
forall g (m :: * -> *). StatefulGen g m => g -> m Int
uniformM g
g m (Int -> Ix2) -> m Int -> m Ix2
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> g -> m Int
forall a g (m :: * -> *). (Uniform a, StatefulGen g m) => g -> m a
forall g (m :: * -> *). StatefulGen g m => g -> m Int
uniformM g
g
  {-# INLINE uniformM #-}

instance UniformRange Ix2 where
  uniformRM :: forall g (m :: * -> *). StatefulGen g m => (Ix2, Ix2) -> g -> m Ix2
uniformRM (Int
l1 :. Int
l2, Int
u1 :. Int
u2) g
g = Int -> Int -> Ix2
(:.) (Int -> Int -> Ix2) -> m Int -> m (Int -> Ix2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Int, Int) -> g -> m Int
forall a g (m :: * -> *).
(UniformRange a, StatefulGen g m) =>
(a, a) -> g -> m a
forall g (m :: * -> *). StatefulGen g m => (Int, Int) -> g -> m Int
uniformRM (Int
l1, Int
u1) g
g m (Int -> Ix2) -> m Int -> m Ix2
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Int, Int) -> g -> m Int
forall a g (m :: * -> *).
(UniformRange a, StatefulGen g m) =>
(a, a) -> g -> m a
forall g (m :: * -> *). StatefulGen g m => (Int, Int) -> g -> m Int
uniformRM (Int
l2, Int
u2) g
g
  {-# INLINE uniformRM #-}

instance Random Ix2

instance Uniform (Ix (n - 1)) => Uniform (IxN n) where
  uniformM :: forall g (m :: * -> *). StatefulGen g m => g -> m (IxN n)
uniformM g
g = Int -> Ix (n - 1) -> IxN n
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
(:>) (Int -> Ix (n - 1) -> IxN n) -> m Int -> m (Ix (n - 1) -> IxN n)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> g -> m Int
forall a g (m :: * -> *). (Uniform a, StatefulGen g m) => g -> m a
forall g (m :: * -> *). StatefulGen g m => g -> m Int
uniformM g
g m (Ix (n - 1) -> IxN n) -> m (Ix (n - 1)) -> m (IxN n)
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> g -> m (Ix (n - 1))
forall a g (m :: * -> *). (Uniform a, StatefulGen g m) => g -> m a
forall g (m :: * -> *). StatefulGen g m => g -> m (Ix (n - 1))
uniformM g
g
  {-# INLINE uniformM #-}

instance UniformRange (Ix (n - 1)) => UniformRange (IxN n) where
  uniformRM :: forall g (m :: * -> *).
StatefulGen g m =>
(IxN n, IxN n) -> g -> m (IxN n)
uniformRM (Int
l1 :> Ix (n - 1)
l2, Int
u1 :> Ix (n - 1)
u2) g
g = Int -> Ix (n - 1) -> IxN n
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
(:>) (Int -> Ix (n - 1) -> IxN n) -> m Int -> m (Ix (n - 1) -> IxN n)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Int, Int) -> g -> m Int
forall a g (m :: * -> *).
(UniformRange a, StatefulGen g m) =>
(a, a) -> g -> m a
forall g (m :: * -> *). StatefulGen g m => (Int, Int) -> g -> m Int
uniformRM (Int
l1, Int
u1) g
g m (Ix (n - 1) -> IxN n) -> m (Ix (n - 1)) -> m (IxN n)
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Ix (n - 1), Ix (n - 1)) -> g -> m (Ix (n - 1))
forall a g (m :: * -> *).
(UniformRange a, StatefulGen g m) =>
(a, a) -> g -> m a
forall g (m :: * -> *).
StatefulGen g m =>
(Ix (n - 1), Ix (n - 1)) -> g -> m (Ix (n - 1))
uniformRM (Ix (n - 1)
l2, Ix (n - 1)
u2) g
g
  {-# INLINE uniformRM #-}

instance Random (Ix (n - 1)) => Random (IxN n) where
  random :: forall g. RandomGen g => g -> (IxN n, g)
random g
g =
    case g -> (Int, g)
forall g. RandomGen g => g -> (Int, g)
forall a g. (Random a, RandomGen g) => g -> (a, g)
random g
g of
      (Int
i, g
g') ->
        case g -> (Ix (n - 1), g)
forall g. RandomGen g => g -> (Ix (n - 1), g)
forall a g. (Random a, RandomGen g) => g -> (a, g)
random g
g' of
          (Ix (n - 1)
n, g
g'') -> (Int
i Int -> Ix (n - 1) -> IxN n
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> Ix (n - 1)
n, g
g'')
  {-# INLINE random #-}
  randomR :: forall g. RandomGen g => (IxN n, IxN n) -> g -> (IxN n, g)
randomR (Int
l1 :> Ix (n - 1)
l2, Int
u1 :> Ix (n - 1)
u2) g
g =
    case (Int, Int) -> g -> (Int, g)
forall g. RandomGen g => (Int, Int) -> g -> (Int, g)
forall a g. (Random a, RandomGen g) => (a, a) -> g -> (a, g)
randomR (Int
l1, Int
u1) g
g of
      (Int
i, g
g') ->
        case (Ix (n - 1), Ix (n - 1)) -> g -> (Ix (n - 1), g)
forall g.
RandomGen g =>
(Ix (n - 1), Ix (n - 1)) -> g -> (Ix (n - 1), g)
forall a g. (Random a, RandomGen g) => (a, a) -> g -> (a, g)
randomR (Ix (n - 1)
l2, Ix (n - 1)
u2) g
g' of
          (Ix (n - 1)
n, g
g'') -> (Int
i Int -> Ix (n - 1) -> IxN n
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> Ix (n - 1)
n, g
g'')
  {-# INLINE randomR #-}

instance I.Ix Ix2 where
  range :: (Ix2, Ix2) -> [Ix2]
range (Int
i1 :. Int
j1, Int
i2 :. Int
j2) = [Int
i Int -> Int -> Ix2
:. Int
j | Int
i <- [Int
i1 .. Int
i2], Int
j <- [Int
j1 .. Int
j2]]
  {-# INLINE range #-}
  unsafeIndex :: (Ix2, Ix2) -> Ix2 -> Int
unsafeIndex (Int
l1 :. Int
l2, Int
u1 :. Int
u2) (Int
i1 :. Int
i2) =
    (Int, Int) -> Int -> Int
forall a. Ix a => (a, a) -> a -> Int
I.unsafeIndex (Int
l1, Int
u1) Int
i1 Int -> Int -> Int
forall a. Num a => a -> a -> a
* (Int, Int) -> Int
forall a. Ix a => (a, a) -> Int
I.unsafeRangeSize (Int
l2, Int
u2) Int -> Int -> Int
forall a. Num a => a -> a -> a
+ (Int, Int) -> Int -> Int
forall a. Ix a => (a, a) -> a -> Int
I.unsafeIndex (Int
l2, Int
u2) Int
i2
  {-# INLINE unsafeIndex #-}
  inRange :: (Ix2, Ix2) -> Ix2 -> Bool
inRange (Int
l1 :. Int
l2, Int
u1 :. Int
u2) (Int
i1 :. Int
i2) = (Int, Int) -> Int -> Bool
forall a. Ix a => (a, a) -> a -> Bool
I.inRange (Int
l1, Int
u1) Int
i1 Bool -> Bool -> Bool
&& (Int, Int) -> Int -> Bool
forall a. Ix a => (a, a) -> a -> Bool
I.inRange (Int
l2, Int
u2) Int
i2
  {-# INLINE inRange #-}

instance I.Ix (Ix (n - 1)) => I.Ix (IxN n) where
  range :: (IxN n, IxN n) -> [IxN n]
range (Int
i1 :> Ix (n - 1)
j1, Int
i2 :> Ix (n - 1)
j2) = [Int
i Int -> Ix (n - 1) -> IxN n
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> Ix (n - 1)
j | Int
i <- [Int
i1 .. Int
i2], Ix (n - 1)
j <- (Ix (n - 1), Ix (n - 1)) -> [Ix (n - 1)]
forall a. Ix a => (a, a) -> [a]
I.range (Ix (n - 1)
j1, Ix (n - 1)
j2)]
  {-# INLINE range #-}
  unsafeIndex :: (IxN n, IxN n) -> IxN n -> Int
unsafeIndex (Int
l1 :> Ix (n - 1)
l2, Int
u1 :> Ix (n - 1)
u2) (Int
i1 :> Ix (n - 1)
i2) =
    (Int, Int) -> Int -> Int
forall a. Ix a => (a, a) -> a -> Int
I.unsafeIndex (Int
l1, Int
u1) Int
i1 Int -> Int -> Int
forall a. Num a => a -> a -> a
* (Ix (n - 1), Ix (n - 1)) -> Int
forall a. Ix a => (a, a) -> Int
I.unsafeRangeSize (Ix (n - 1)
l2, Ix (n - 1)
u2) Int -> Int -> Int
forall a. Num a => a -> a -> a
+ (Ix (n - 1), Ix (n - 1)) -> Ix (n - 1) -> Int
forall a. Ix a => (a, a) -> a -> Int
I.unsafeIndex (Ix (n - 1)
l2, Ix (n - 1)
u2) Ix (n - 1)
i2
  {-# INLINE unsafeIndex #-}
  inRange :: (IxN n, IxN n) -> IxN n -> Bool
inRange (Int
l1 :> Ix (n - 1)
l2, Int
u1 :> Ix (n - 1)
u2) (Int
i1 :> Ix (n - 1)
i2) = (Int, Int) -> Int -> Bool
forall a. Ix a => (a, a) -> a -> Bool
I.inRange (Int
l1, Int
u1) Int
i1 Bool -> Bool -> Bool
&& (Ix (n - 1), Ix (n - 1)) -> Ix (n - 1) -> Bool
forall a. Ix a => (a, a) -> a -> Bool
I.inRange (Ix (n - 1)
l2, Ix (n - 1)
u2) Ix (n - 1)
i2
  {-# INLINE inRange #-}

instance Num Ix2 where
  + :: Ix2 -> Ix2 -> Ix2
(+) = (Int -> Int -> Int) -> Ix2 -> Ix2 -> Ix2
forall ix. Index ix => (Int -> Int -> Int) -> ix -> ix -> ix
liftIndex2 Int -> Int -> Int
forall a. Num a => a -> a -> a
(+)
  {-# INLINE [1] (+) #-}
  (-) = (Int -> Int -> Int) -> Ix2 -> Ix2 -> Ix2
forall ix. Index ix => (Int -> Int -> Int) -> ix -> ix -> ix
liftIndex2 (-)
  {-# INLINE [1] (-) #-}
  * :: Ix2 -> Ix2 -> Ix2
(*) = (Int -> Int -> Int) -> Ix2 -> Ix2 -> Ix2
forall ix. Index ix => (Int -> Int -> Int) -> ix -> ix -> ix
liftIndex2 Int -> Int -> Int
forall a. Num a => a -> a -> a
(*)
  {-# INLINE [1] (*) #-}
  negate :: Ix2 -> Ix2
negate = (Int -> Int) -> Ix2 -> Ix2
forall ix. Index ix => (Int -> Int) -> ix -> ix
liftIndex Int -> Int
forall a. Num a => a -> a
negate
  {-# INLINE [1] negate #-}
  abs :: Ix2 -> Ix2
abs = (Int -> Int) -> Ix2 -> Ix2
forall ix. Index ix => (Int -> Int) -> ix -> ix
liftIndex Int -> Int
forall a. Num a => a -> a
abs
  {-# INLINE [1] abs #-}
  signum :: Ix2 -> Ix2
signum = (Int -> Int) -> Ix2 -> Ix2
forall ix. Index ix => (Int -> Int) -> ix -> ix
liftIndex Int -> Int
forall a. Num a => a -> a
signum
  {-# INLINE [1] signum #-}
  fromInteger :: Integer -> Ix2
fromInteger = Int -> Ix2
forall ix. Index ix => Int -> ix
pureIndex (Int -> Ix2) -> (Integer -> Int) -> Integer -> Ix2
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Int
forall a. Num a => Integer -> a
fromInteger
  {-# INLINE [1] fromInteger #-}

instance Num Ix3 where
  + :: Ix3 -> Ix3 -> Ix3
(+) = (Int -> Int -> Int) -> Ix3 -> Ix3 -> Ix3
forall ix. Index ix => (Int -> Int -> Int) -> ix -> ix -> ix
liftIndex2 Int -> Int -> Int
forall a. Num a => a -> a -> a
(+)
  {-# INLINE [1] (+) #-}
  (-) = (Int -> Int -> Int) -> Ix3 -> Ix3 -> Ix3
forall ix. Index ix => (Int -> Int -> Int) -> ix -> ix -> ix
liftIndex2 (-)
  {-# INLINE [1] (-) #-}
  * :: Ix3 -> Ix3 -> Ix3
(*) = (Int -> Int -> Int) -> Ix3 -> Ix3 -> Ix3
forall ix. Index ix => (Int -> Int -> Int) -> ix -> ix -> ix
liftIndex2 Int -> Int -> Int
forall a. Num a => a -> a -> a
(*)
  {-# INLINE [1] (*) #-}
  negate :: Ix3 -> Ix3
negate = (Int -> Int) -> Ix3 -> Ix3
forall ix. Index ix => (Int -> Int) -> ix -> ix
liftIndex Int -> Int
forall a. Num a => a -> a
negate
  {-# INLINE [1] negate #-}
  abs :: Ix3 -> Ix3
abs = (Int -> Int) -> Ix3 -> Ix3
forall ix. Index ix => (Int -> Int) -> ix -> ix
liftIndex Int -> Int
forall a. Num a => a -> a
abs
  {-# INLINE [1] abs #-}
  signum :: Ix3 -> Ix3
signum = (Int -> Int) -> Ix3 -> Ix3
forall ix. Index ix => (Int -> Int) -> ix -> ix
liftIndex Int -> Int
forall a. Num a => a -> a
signum
  {-# INLINE [1] signum #-}
  fromInteger :: Integer -> Ix3
fromInteger = Int -> Ix3
forall ix. Index ix => Int -> ix
pureIndex (Int -> Ix3) -> (Integer -> Int) -> Integer -> Ix3
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Int
forall a. Num a => Integer -> a
fromInteger
  {-# INLINE [1] fromInteger #-}

instance {-# OVERLAPPABLE #-} HighIxN n => Num (IxN n) where
  + :: IxN n -> IxN n -> IxN n
(+) = (Int -> Int -> Int) -> IxN n -> IxN n -> IxN n
forall ix. Index ix => (Int -> Int -> Int) -> ix -> ix -> ix
liftIndex2 Int -> Int -> Int
forall a. Num a => a -> a -> a
(+)
  {-# INLINE [1] (+) #-}
  (-) = (Int -> Int -> Int) -> IxN n -> IxN n -> IxN n
forall ix. Index ix => (Int -> Int -> Int) -> ix -> ix -> ix
liftIndex2 (-)
  {-# INLINE [1] (-) #-}
  * :: IxN n -> IxN n -> IxN n
(*) = (Int -> Int -> Int) -> IxN n -> IxN n -> IxN n
forall ix. Index ix => (Int -> Int -> Int) -> ix -> ix -> ix
liftIndex2 Int -> Int -> Int
forall a. Num a => a -> a -> a
(*)
  {-# INLINE [1] (*) #-}
  negate :: IxN n -> IxN n
negate = (Int -> Int) -> IxN n -> IxN n
forall ix. Index ix => (Int -> Int) -> ix -> ix
liftIndex Int -> Int
forall a. Num a => a -> a
negate
  {-# INLINE [1] negate #-}
  abs :: IxN n -> IxN n
abs = (Int -> Int) -> IxN n -> IxN n
forall ix. Index ix => (Int -> Int) -> ix -> ix
liftIndex Int -> Int
forall a. Num a => a -> a
abs
  {-# INLINE [1] abs #-}
  signum :: IxN n -> IxN n
signum = (Int -> Int) -> IxN n -> IxN n
forall ix. Index ix => (Int -> Int) -> ix -> ix
liftIndex Int -> Int
forall a. Num a => a -> a
signum
  {-# INLINE [1] signum #-}
  fromInteger :: Integer -> IxN n
fromInteger = Int -> IxN n
forall ix. Index ix => Int -> ix
pureIndex (Int -> IxN n) -> (Integer -> Int) -> Integer -> IxN n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Int
forall a. Num a => Integer -> a
fromInteger
  {-# INLINE [1] fromInteger #-}

instance Bounded Ix2 where
  minBound :: Ix2
minBound = Int -> Ix2
forall ix. Index ix => Int -> ix
pureIndex Int
forall a. Bounded a => a
minBound
  {-# INLINE minBound #-}
  maxBound :: Ix2
maxBound = Int -> Ix2
forall ix. Index ix => Int -> ix
pureIndex Int
forall a. Bounded a => a
maxBound
  {-# INLINE maxBound #-}

instance Bounded Ix3 where
  minBound :: Ix3
minBound = Int -> Ix3
forall ix. Index ix => Int -> ix
pureIndex Int
forall a. Bounded a => a
minBound
  {-# INLINE minBound #-}
  maxBound :: Ix3
maxBound = Int -> Ix3
forall ix. Index ix => Int -> ix
pureIndex Int
forall a. Bounded a => a
maxBound
  {-# INLINE maxBound #-}

instance {-# OVERLAPPABLE #-} HighIxN n => Bounded (IxN n) where
  minBound :: IxN n
minBound = Int -> IxN n
forall ix. Index ix => Int -> ix
pureIndex Int
forall a. Bounded a => a
minBound
  {-# INLINE minBound #-}
  maxBound :: IxN n
maxBound = Int -> IxN n
forall ix. Index ix => Int -> ix
pureIndex Int
forall a. Bounded a => a
maxBound
  {-# INLINE maxBound #-}

instance NFData Ix2 where
  rnf :: Ix2 -> ()
rnf Ix2
ix = Ix2
ix Ix2 -> () -> ()
forall a b. a -> b -> b
`seq` ()

instance NFData (IxN n) where
  rnf :: IxN n -> ()
rnf IxN n
ix = IxN n
ix IxN n -> () -> ()
forall a b. a -> b -> b
`seq` ()

instance Eq Ix2 where
  (Int
i1 :. Int
j1) == :: Ix2 -> Ix2 -> Bool
== (Int
i2 :. Int
j2) = Int
i1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
i2 Bool -> Bool -> Bool
&& Int
j1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
j2

instance Eq (Ix (n - 1)) => Eq (IxN n) where
  (Int
i1 :> Ix (n - 1)
ix1) == :: IxN n -> IxN n -> Bool
== (Int
i2 :> Ix (n - 1)
ix2) = Int
i1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
i2 Bool -> Bool -> Bool
&& Ix (n - 1)
ix1 Ix (n - 1) -> Ix (n - 1) -> Bool
forall a. Eq a => a -> a -> Bool
== Ix (n - 1)
ix2

instance Ord Ix2 where
  compare :: Ix2 -> Ix2 -> Ordering
compare (Int
i1 :. Int
j1) (Int
i2 :. Int
j2) = Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Int
i1 Int
i2 Ordering -> Ordering -> Ordering
forall a. Semigroup a => a -> a -> a
<> Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Int
j1 Int
j2

instance Ord (Ix (n - 1)) => Ord (IxN n) where
  compare :: IxN n -> IxN n -> Ordering
compare (Int
i1 :> Ix (n - 1)
ix1) (Int
i2 :> Ix (n - 1)
ix2) = Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Int
i1 Int
i2 Ordering -> Ordering -> Ordering
forall a. Semigroup a => a -> a -> a
<> Ix (n - 1) -> Ix (n - 1) -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Ix (n - 1)
ix1 Ix (n - 1)
ix2

instance Index Ix2 where
  type Dimensions Ix2 = 2
  dimensions :: forall (proxy :: * -> *). proxy Ix2 -> Dim
dimensions proxy Ix2
_ = Dim
2
  {-# INLINE [1] dimensions #-}
  totalElem :: Sz Ix2 -> Int
totalElem (SafeSz (Int
k2 :. Int
k1)) = Int
k2 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
k1
  {-# INLINE [1] totalElem #-}
  isSafeIndex :: Sz Ix2 -> Ix2 -> Bool
isSafeIndex (SafeSz (Int
k2 :. Int
k1)) (Int
i2 :. Int
i1) = Int
0 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
i2 Bool -> Bool -> Bool
&& Int
0 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
i1 Bool -> Bool -> Bool
&& Int
i2 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
k2 Bool -> Bool -> Bool
&& Int
i1 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
k1
  {-# INLINE [1] isSafeIndex #-}
  toLinearIndex :: Sz Ix2 -> Ix2 -> Int
toLinearIndex (SafeSz (Int
_ :. Int
k1)) (Int
i2 :. Int
i1) = Int
k1 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
i2 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
i1
  {-# INLINE [1] toLinearIndex #-}
  fromLinearIndex :: Sz Ix2 -> Int -> Ix2
fromLinearIndex (SafeSz (Int
_ :. Int
k1)) Int
i =
    case Int
i Int -> Int -> (Int, Int)
forall a. Integral a => a -> a -> (a, a)
`quotRem` Int
k1 of
      (Int
i2, Int
i1) -> Int
i2 Int -> Int -> Ix2
:. Int
i1
  {-# INLINE [1] fromLinearIndex #-}
  consDim :: Int -> Lower Ix2 -> Ix2
consDim = Int -> Int -> Ix2
Int -> Lower Ix2 -> Ix2
(:.)
  {-# INLINE [1] consDim #-}
  unconsDim :: Ix2 -> (Int, Lower Ix2)
unconsDim (Int
i2 :. Int
i1) = (Int
i2, Int
Lower Ix2
i1)
  {-# INLINE [1] unconsDim #-}
  snocDim :: Lower Ix2 -> Int -> Ix2
snocDim Lower Ix2
i2 Int
i1 = Int
Lower Ix2
i2 Int -> Int -> Ix2
:. Int
i1
  {-# INLINE [1] snocDim #-}
  unsnocDim :: Ix2 -> (Lower Ix2, Int)
unsnocDim (Int
i2 :. Int
i1) = (Int
Lower Ix2
i2, Int
i1)
  {-# INLINE [1] unsnocDim #-}
  getDimM :: forall (m :: * -> *). MonadThrow m => Ix2 -> Dim -> m Int
getDimM (Int
i2 :. Int
_) Dim
2 = Int -> m Int
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Int
i2
  getDimM (Int
_ :. Int
i1) Dim
1 = Int -> m Int
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Int
i1
  getDimM Ix2
ix Dim
d = IndexException -> m Int
forall e a. (HasCallStack, Exception e) => e -> m a
forall (m :: * -> *) e a.
(MonadThrow m, HasCallStack, Exception e) =>
e -> m a
throwM (IndexException -> m Int) -> IndexException -> m Int
forall a b. (a -> b) -> a -> b
$ Ix2 -> Dim -> IndexException
forall ix.
(NFData ix, Eq ix, Show ix, Typeable ix) =>
ix -> Dim -> IndexException
IndexDimensionException Ix2
ix Dim
d
  {-# INLINE [1] getDimM #-}
  setDimM :: forall (m :: * -> *). MonadThrow m => Ix2 -> Dim -> Int -> m Ix2
setDimM (Int
_ :. Int
i1) Dim
2 Int
i2 = Ix2 -> m Ix2
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
i2 Int -> Int -> Ix2
:. Int
i1)
  setDimM (Int
i2 :. Int
_) Dim
1 Int
i1 = Ix2 -> m Ix2
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
i2 Int -> Int -> Ix2
:. Int
i1)
  setDimM Ix2
ix Dim
d Int
_ = IndexException -> m Ix2
forall e a. (HasCallStack, Exception e) => e -> m a
forall (m :: * -> *) e a.
(MonadThrow m, HasCallStack, Exception e) =>
e -> m a
throwM (IndexException -> m Ix2) -> IndexException -> m Ix2
forall a b. (a -> b) -> a -> b
$ Ix2 -> Dim -> IndexException
forall ix.
(NFData ix, Eq ix, Show ix, Typeable ix) =>
ix -> Dim -> IndexException
IndexDimensionException Ix2
ix Dim
d
  {-# INLINE [1] setDimM #-}
  pullOutDimM :: forall (m :: * -> *).
MonadThrow m =>
Ix2 -> Dim -> m (Int, Lower Ix2)
pullOutDimM (Int
i2 :. Int
i1) Dim
2 = (Int, Int) -> m (Int, Int)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
i2, Int
i1)
  pullOutDimM (Int
i2 :. Int
i1) Dim
1 = (Int, Int) -> m (Int, Int)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
i1, Int
i2)
  pullOutDimM Ix2
ix Dim
d = IndexException -> m (Int, Lower Ix2)
forall e a. (HasCallStack, Exception e) => e -> m a
forall (m :: * -> *) e a.
(MonadThrow m, HasCallStack, Exception e) =>
e -> m a
throwM (IndexException -> m (Int, Lower Ix2))
-> IndexException -> m (Int, Lower Ix2)
forall a b. (a -> b) -> a -> b
$ Ix2 -> Dim -> IndexException
forall ix.
(NFData ix, Eq ix, Show ix, Typeable ix) =>
ix -> Dim -> IndexException
IndexDimensionException Ix2
ix Dim
d
  {-# INLINE [1] pullOutDimM #-}
  insertDimM :: forall (m :: * -> *).
MonadThrow m =>
Lower Ix2 -> Dim -> Int -> m Ix2
insertDimM Lower Ix2
i1 Dim
2 Int
i2 = Ix2 -> m Ix2
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
i2 Int -> Int -> Ix2
:. Int
Lower Ix2
i1)
  insertDimM Lower Ix2
i2 Dim
1 Int
i1 = Ix2 -> m Ix2
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
Lower Ix2
i2 Int -> Int -> Ix2
:. Int
i1)
  insertDimM Lower Ix2
ix Dim
d Int
_ = IndexException -> m Ix2
forall e a. (HasCallStack, Exception e) => e -> m a
forall (m :: * -> *) e a.
(MonadThrow m, HasCallStack, Exception e) =>
e -> m a
throwM (IndexException -> m Ix2) -> IndexException -> m Ix2
forall a b. (a -> b) -> a -> b
$ Int -> Dim -> IndexException
forall ix.
(NFData ix, Eq ix, Show ix, Typeable ix) =>
ix -> Dim -> IndexException
IndexDimensionException Int
Lower Ix2
ix Dim
d
  {-# INLINE [1] insertDimM #-}
  pureIndex :: Int -> Ix2
pureIndex Int
i = Int
i Int -> Int -> Ix2
:. Int
i
  {-# INLINE [1] pureIndex #-}
  liftIndex :: (Int -> Int) -> Ix2 -> Ix2
liftIndex Int -> Int
f (Int
i2 :. Int
i1) = Int -> Int
f Int
i2 Int -> Int -> Ix2
:. Int -> Int
f Int
i1
  {-# INLINE [1] liftIndex #-}
  liftIndex2 :: (Int -> Int -> Int) -> Ix2 -> Ix2 -> Ix2
liftIndex2 Int -> Int -> Int
f (Int
i2 :. Int
i1) (Int
i2' :. Int
i1') = Int -> Int -> Int
f Int
i2 Int
i2' Int -> Int -> Ix2
:. Int -> Int -> Int
f Int
i1 Int
i1'
  {-# INLINE [1] liftIndex2 #-}
  repairIndex :: Sz Ix2
-> Ix2 -> (Sz Int -> Int -> Int) -> (Sz Int -> Int -> Int) -> Ix2
repairIndex (SafeSz (Int
k :. Int
szL)) (Int
i :. Int
ixL) Sz Int -> Int -> Int
rBelow Sz Int -> Int -> Int
rOver =
    Sz Int
-> Int -> (Sz Int -> Int -> Int) -> (Sz Int -> Int -> Int) -> Int
forall ix.
Index ix =>
Sz ix
-> ix -> (Sz Int -> Int -> Int) -> (Sz Int -> Int -> Int) -> ix
repairIndex (Int -> Sz Int
forall ix. ix -> Sz ix
SafeSz Int
k) Int
i Sz Int -> Int -> Int
rBelow Sz Int -> Int -> Int
rOver Int -> Int -> Ix2
:. Sz Int
-> Int -> (Sz Int -> Int -> Int) -> (Sz Int -> Int -> Int) -> Int
forall ix.
Index ix =>
Sz ix
-> ix -> (Sz Int -> Int -> Int) -> (Sz Int -> Int -> Int) -> ix
repairIndex (Int -> Sz Int
forall ix. ix -> Sz ix
SafeSz Int
szL) Int
ixL Sz Int -> Int -> Int
rBelow Sz Int -> Int -> Int
rOver
  {-# INLINE [1] repairIndex #-}
  iterF :: forall (f :: * -> *) a.
Ix2
-> Ix2
-> Ix2
-> (Int -> Int -> Bool)
-> f a
-> (Ix2 -> f a -> f a)
-> f a
iterF (Int
s :. Int
sIxL) (Int
e :. Int
eIxL) (Int
inc :. Int
incIxL) Int -> Int -> Bool
cond f a
initAct Ix2 -> f a -> f a
f =
    Int
-> (Int -> Bool)
-> (Int -> Int)
-> f a
-> (Int -> f a -> f a)
-> f a
forall (f :: * -> *) a.
Int
-> (Int -> Bool)
-> (Int -> Int)
-> f a
-> (Int -> f a -> f a)
-> f a
loopF Int
s (Int -> Int -> Bool
`cond` Int
e) (Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
inc) f a
initAct ((Int -> f a -> f a) -> f a) -> (Int -> f a -> f a) -> f a
forall a b. (a -> b) -> a -> b
$ \ !Int
i f a
g ->
      Int
-> (Int -> Bool)
-> (Int -> Int)
-> f a
-> (Int -> f a -> f a)
-> f a
forall (f :: * -> *) a.
Int
-> (Int -> Bool)
-> (Int -> Int)
-> f a
-> (Int -> f a -> f a)
-> f a
loopF Int
sIxL (Int -> Int -> Bool
`cond` Int
eIxL) (Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
incIxL) f a
g ((Int -> f a -> f a) -> f a) -> (Int -> f a -> f a) -> f a
forall a b. (a -> b) -> a -> b
$ \ !Int
j -> Ix2 -> f a -> f a
f (Int
i Int -> Int -> Ix2
:. Int
j)
  {-# INLINE iterF #-}

instance {-# OVERLAPPING #-} Index (IxN 3) where
  type Dimensions Ix3 = 3
  dimensions :: forall (proxy :: * -> *). proxy Ix3 -> Dim
dimensions proxy Ix3
_ = Dim
3
  {-# INLINE [1] dimensions #-}
  totalElem :: Sz Ix3 -> Int
totalElem (SafeSz (Int
k3 :> Int
k2 :. Int
k1)) = Int
k3 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
k2 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
k1
  {-# INLINE [1] totalElem #-}
  isSafeIndex :: Sz Ix3 -> Ix3 -> Bool
isSafeIndex (SafeSz (Int
k3 :> Int
k2 :. Int
k1)) (Int
i3 :> Int
i2 :. Int
i1) =
    Int
0 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
i3 Bool -> Bool -> Bool
&& Int
0 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
i2 Bool -> Bool -> Bool
&& Int
0 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
i1 Bool -> Bool -> Bool
&& Int
i3 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
k3 Bool -> Bool -> Bool
&& Int
i2 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
k2 Bool -> Bool -> Bool
&& Int
i1 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
k1
  {-# INLINE [1] isSafeIndex #-}
  toLinearIndex :: Sz Ix3 -> Ix3 -> Int
toLinearIndex (SafeSz (Int
_ :> Int
k2 :. Int
k1)) (Int
i3 :> Int
i2 :. Int
i1) = (Int
i3 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
k2 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
i2) Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
k1 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
i1
  {-# INLINE [1] toLinearIndex #-}
  fromLinearIndex :: Sz Ix3 -> Int -> Ix3
fromLinearIndex (SafeSz (Int
_ :> Ix (3 - 1)
ix)) Int
i = let !(Int
q, Ix2
ixL) = Ix2 -> Int -> (Int, Ix2)
forall ix. Index ix => ix -> Int -> (Int, ix)
fromLinearIndexAcc Ix (3 - 1)
Ix2
ix Int
i in Int
q Int -> Ix (3 - 1) -> Ix3
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> Ix (3 - 1)
Ix2
ixL
  {-# INLINE fromLinearIndex #-}
  fromLinearIndexAcc :: Ix3 -> Int -> (Int, Ix3)
fromLinearIndexAcc (Int
m :> Ix (3 - 1)
ix) !Int
k = (Int
q, Int
r Int -> Ix (3 - 1) -> Ix3
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> Ix (3 - 1)
Ix2
ixL)
    where
      !(!Int
kL, !Ix2
ixL) = Ix2 -> Int -> (Int, Ix2)
forall ix. Index ix => ix -> Int -> (Int, ix)
fromLinearIndexAcc Ix (3 - 1)
Ix2
ix Int
k
      !(!Int
q, !Int
r) = Int -> Int -> (Int, Int)
forall a. Integral a => a -> a -> (a, a)
quotRem Int
kL Int
m
  {-# INLINE fromLinearIndexAcc #-}
  consDim :: Int -> Lower Ix3 -> Ix3
consDim = Int -> Lower Ix3 -> Ix3
Int -> Ix (3 - 1) -> Ix3
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
(:>)
  {-# INLINE [1] consDim #-}
  unconsDim :: Ix3 -> (Int, Lower Ix3)
unconsDim (Int
i3 :> Ix (3 - 1)
ix) = (Int
i3, Lower Ix3
Ix (3 - 1)
ix)
  {-# INLINE [1] unconsDim #-}
  snocDim :: Lower Ix3 -> Int -> Ix3
snocDim (Int
i3 :. Int
i2) Int
i1 = Int
i3 Int -> Ix (3 - 1) -> Ix3
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> Int
i2 Int -> Int -> Ix2
:. Int
i1
  {-# INLINE [1] snocDim #-}
  unsnocDim :: Ix3 -> (Lower Ix3, Int)
unsnocDim (Int
i3 :> Int
i2 :. Int
i1) = (Int
i3 Int -> Int -> Ix2
:. Int
i2, Int
i1)
  {-# INLINE [1] unsnocDim #-}
  getDimM :: forall (m :: * -> *). MonadThrow m => Ix3 -> Dim -> m Int
getDimM (Int
i3 :> Int
_ :. Int
_) Dim
3 = Int -> m Int
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Int
i3
  getDimM (Int
_ :> Int
i2 :. Int
_) Dim
2 = Int -> m Int
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Int
i2
  getDimM (Int
_ :> Int
_ :. Int
i1) Dim
1 = Int -> m Int
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Int
i1
  getDimM Ix3
ix Dim
d = IndexException -> m Int
forall e a. (HasCallStack, Exception e) => e -> m a
forall (m :: * -> *) e a.
(MonadThrow m, HasCallStack, Exception e) =>
e -> m a
throwM (IndexException -> m Int) -> IndexException -> m Int
forall a b. (a -> b) -> a -> b
$ Ix3 -> Dim -> IndexException
forall ix.
(NFData ix, Eq ix, Show ix, Typeable ix) =>
ix -> Dim -> IndexException
IndexDimensionException Ix3
ix Dim
d
  {-# INLINE [1] getDimM #-}
  setDimM :: forall (m :: * -> *). MonadThrow m => Ix3 -> Dim -> Int -> m Ix3
setDimM (Int
_ :> Int
i2 :. Int
i1) Dim
3 Int
i3 = Ix3 -> m Ix3
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
i3 Int -> Ix (3 - 1) -> Ix3
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> Int
i2 Int -> Int -> Ix2
:. Int
i1)
  setDimM (Int
i3 :> Int
_ :. Int
i1) Dim
2 Int
i2 = Ix3 -> m Ix3
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
i3 Int -> Ix (3 - 1) -> Ix3
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> Int
i2 Int -> Int -> Ix2
:. Int
i1)
  setDimM (Int
i3 :> Int
i2 :. Int
_) Dim
1 Int
i1 = Ix3 -> m Ix3
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
i3 Int -> Ix (3 - 1) -> Ix3
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> Int
i2 Int -> Int -> Ix2
:. Int
i1)
  setDimM Ix3
ix Dim
d Int
_ = IndexException -> m Ix3
forall e a. (HasCallStack, Exception e) => e -> m a
forall (m :: * -> *) e a.
(MonadThrow m, HasCallStack, Exception e) =>
e -> m a
throwM (IndexException -> m Ix3) -> IndexException -> m Ix3
forall a b. (a -> b) -> a -> b
$ Ix3 -> Dim -> IndexException
forall ix.
(NFData ix, Eq ix, Show ix, Typeable ix) =>
ix -> Dim -> IndexException
IndexDimensionException Ix3
ix Dim
d
  {-# INLINE [1] setDimM #-}
  pullOutDimM :: forall (m :: * -> *).
MonadThrow m =>
Ix3 -> Dim -> m (Int, Lower Ix3)
pullOutDimM (Int
i3 :> Int
i2 :. Int
i1) Dim
3 = (Int, Ix2) -> m (Int, Ix2)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
i3, Int
i2 Int -> Int -> Ix2
:. Int
i1)
  pullOutDimM (Int
i3 :> Int
i2 :. Int
i1) Dim
2 = (Int, Ix2) -> m (Int, Ix2)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
i2, Int
i3 Int -> Int -> Ix2
:. Int
i1)
  pullOutDimM (Int
i3 :> Int
i2 :. Int
i1) Dim
1 = (Int, Ix2) -> m (Int, Ix2)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
i1, Int
i3 Int -> Int -> Ix2
:. Int
i2)
  pullOutDimM Ix3
ix Dim
d = IndexException -> m (Int, Lower Ix3)
forall e a. (HasCallStack, Exception e) => e -> m a
forall (m :: * -> *) e a.
(MonadThrow m, HasCallStack, Exception e) =>
e -> m a
throwM (IndexException -> m (Int, Lower Ix3))
-> IndexException -> m (Int, Lower Ix3)
forall a b. (a -> b) -> a -> b
$ Ix3 -> Dim -> IndexException
forall ix.
(NFData ix, Eq ix, Show ix, Typeable ix) =>
ix -> Dim -> IndexException
IndexDimensionException Ix3
ix Dim
d
  {-# INLINE [1] pullOutDimM #-}
  insertDimM :: forall (m :: * -> *).
MonadThrow m =>
Lower Ix3 -> Dim -> Int -> m Ix3
insertDimM (Int
i2 :. Int
i1) Dim
3 Int
i3 = Ix3 -> m Ix3
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
i3 Int -> Ix (3 - 1) -> Ix3
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> Int
i2 Int -> Int -> Ix2
:. Int
i1)
  insertDimM (Int
i3 :. Int
i1) Dim
2 Int
i2 = Ix3 -> m Ix3
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
i3 Int -> Ix (3 - 1) -> Ix3
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> Int
i2 Int -> Int -> Ix2
:. Int
i1)
  insertDimM (Int
i3 :. Int
i2) Dim
1 Int
i1 = Ix3 -> m Ix3
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
i3 Int -> Ix (3 - 1) -> Ix3
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> Int
i2 Int -> Int -> Ix2
:. Int
i1)
  insertDimM Lower Ix3
ix Dim
d Int
_ = IndexException -> m Ix3
forall e a. (HasCallStack, Exception e) => e -> m a
forall (m :: * -> *) e a.
(MonadThrow m, HasCallStack, Exception e) =>
e -> m a
throwM (IndexException -> m Ix3) -> IndexException -> m Ix3
forall a b. (a -> b) -> a -> b
$ Ix2 -> Dim -> IndexException
forall ix.
(NFData ix, Eq ix, Show ix, Typeable ix) =>
ix -> Dim -> IndexException
IndexDimensionException Lower Ix3
Ix2
ix Dim
d
  {-# INLINE [1] insertDimM #-}
  pureIndex :: Int -> Ix3
pureIndex Int
i = Int
i Int -> Ix (3 - 1) -> Ix3
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> Int
i Int -> Int -> Ix2
:. Int
i
  {-# INLINE [1] pureIndex #-}
  liftIndex :: (Int -> Int) -> Ix3 -> Ix3
liftIndex Int -> Int
f (Int
i3 :> Int
i2 :. Int
i1) = Int -> Int
f Int
i3 Int -> Ix (3 - 1) -> Ix3
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> Int -> Int
f Int
i2 Int -> Int -> Ix2
:. Int -> Int
f Int
i1
  {-# INLINE [1] liftIndex #-}
  liftIndex2 :: (Int -> Int -> Int) -> Ix3 -> Ix3 -> Ix3
liftIndex2 Int -> Int -> Int
f (Int
i3 :> Int
i2 :. Int
i1) (Int
i3' :> Int
i2' :. Int
i1') = Int -> Int -> Int
f Int
i3 Int
i3' Int -> Ix (3 - 1) -> Ix3
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> Int -> Int -> Int
f Int
i2 Int
i2' Int -> Int -> Ix2
:. Int -> Int -> Int
f Int
i1 Int
i1'
  {-# INLINE [1] liftIndex2 #-}
  repairIndex :: Sz Ix3
-> Ix3 -> (Sz Int -> Int -> Int) -> (Sz Int -> Int -> Int) -> Ix3
repairIndex (SafeSz (Int
n :> Ix (3 - 1)
szL)) (Int
i :> Ix (3 - 1)
ixL) Sz Int -> Int -> Int
rBelow Sz Int -> Int -> Int
rOver =
    Sz Int
-> Int -> (Sz Int -> Int -> Int) -> (Sz Int -> Int -> Int) -> Int
forall ix.
Index ix =>
Sz ix
-> ix -> (Sz Int -> Int -> Int) -> (Sz Int -> Int -> Int) -> ix
repairIndex (Int -> Sz Int
forall ix. ix -> Sz ix
SafeSz Int
n) Int
i Sz Int -> Int -> Int
rBelow Sz Int -> Int -> Int
rOver Int -> Ix (3 - 1) -> Ix3
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> Sz Ix2
-> Ix2 -> (Sz Int -> Int -> Int) -> (Sz Int -> Int -> Int) -> Ix2
forall ix.
Index ix =>
Sz ix
-> ix -> (Sz Int -> Int -> Int) -> (Sz Int -> Int -> Int) -> ix
repairIndex (Ix2 -> Sz Ix2
forall ix. ix -> Sz ix
SafeSz Ix (3 - 1)
Ix2
szL) Ix (3 - 1)
Ix2
ixL Sz Int -> Int -> Int
rBelow Sz Int -> Int -> Int
rOver
  {-# INLINE [1] repairIndex #-}
  iterTargetRowMajorAccM :: forall (m :: * -> *) a.
Monad m =>
Int
-> Int
-> Sz Ix3
-> Ix3
-> Ix3
-> a
-> (Int -> Ix3 -> a -> m a)
-> m a
iterTargetRowMajorAccM Int
iAcc Int
iStart Sz Ix3
sz (Int
b3 :> Int
b2 :. Int
b1) (Int
s3 :> Int
s2 :. Int
s1) a
initAcc Int -> Ix3 -> a -> m a
action =
    let n :: Int
n = Sz Ix3 -> Int
forall ix. Index ix => Sz ix -> Int
totalElem Sz Ix3
sz
        iShift :: Int
iShift = Int
iStart Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
iAcc Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
n
     in Int
-> (Int -> Bool) -> (Int -> Int) -> a -> (Int -> a -> m a) -> m a
forall (m :: * -> *) a.
Monad m =>
Int
-> (Int -> Bool) -> (Int -> Int) -> a -> (Int -> a -> m a) -> m a
loopM Int
0 (Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
n) (Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) a
initAcc ((Int -> a -> m a) -> m a) -> (Int -> a -> m a) -> m a
forall a b. (a -> b) -> a -> b
$ \ !Int
i !a
acc ->
          let (Int
i3 :> Int
i2 :. Int
i1) = Sz Ix3 -> Int -> Ix3
forall ix. Index ix => Sz ix -> Int -> ix
fromLinearIndex Sz Ix3
sz Int
i
           in Int -> Ix3 -> a -> m a
action (Int
iShift Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
i) ((Int
b3 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
s3 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
i3) Int -> Ix (3 - 1) -> Ix3
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> (Int
b2 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
s2 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
i2) Int -> Int -> Ix2
:. (Int
b1 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
s1 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
i1)) a
acc
  {-# INLINE iterTargetRowMajorAccM #-}
  iterTargetRowMajorAccST_ :: forall s a.
Int
-> Int
-> Scheduler s ()
-> Int
-> Sz Ix3
-> Ix3
-> Ix3
-> a
-> (a -> ST s (a, a))
-> (Int -> Ix3 -> a -> ST s a)
-> ST s ()
iterTargetRowMajorAccST_ Int
iAcc Int
fact Scheduler s ()
scheduler Int
iStart Sz Ix3
sz (Int
b3 :> Int
b2 :. Int
b1) (Int
s3 :> Int
s2 :. Int
s1) a
acc a -> ST s (a, a)
splitAcc Int -> Ix3 -> a -> ST s a
action =
    let n :: Int
n = Sz Ix3 -> Int
forall ix. Index ix => Sz ix -> Int
totalElem Sz Ix3
sz
        iShift :: Int
iShift = Int
iStart Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
iAcc Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
n
     in Int
-> Scheduler s ()
-> Int
-> Int
-> Int
-> a
-> (a -> ST s (a, a))
-> (Int -> a -> ST s a)
-> ST s ()
forall s a.
Int
-> Scheduler s ()
-> Int
-> Int
-> Int
-> a
-> (a -> ST s (a, a))
-> (Int -> a -> ST s a)
-> ST s ()
iterLinearAccST_ Int
fact Scheduler s ()
scheduler Int
0 Int
1 Int
n a
acc a -> ST s (a, a)
splitAcc ((Int -> a -> ST s a) -> ST s ())
-> (Int -> a -> ST s a) -> ST s ()
forall a b. (a -> b) -> a -> b
$ \ !Int
i ->
          let (Int
i3 :> Int
i2 :. Int
i1) = Sz Ix3 -> Int -> Ix3
forall ix. Index ix => Sz ix -> Int -> ix
fromLinearIndex Sz Ix3
sz Int
i
           in Int -> Ix3 -> a -> ST s a
action (Int
iShift Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
i) ((Int
b3 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
s3 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
i3) Int -> Ix (3 - 1) -> Ix3
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> (Int
b2 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
s2 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
i2) Int -> Int -> Ix2
:. (Int
b1 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
s1 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
i1))
  {-# INLINE iterTargetRowMajorAccST_ #-}
  iterTargetRowMajorAccST :: forall s a.
Int
-> Int
-> Scheduler s a
-> Int
-> Sz Ix3
-> Ix3
-> Ix3
-> a
-> (a -> ST s (a, a))
-> (Int -> Ix3 -> a -> ST s a)
-> ST s a
iterTargetRowMajorAccST Int
iAcc Int
fact Scheduler s a
scheduler Int
iStart Sz Ix3
sz (Int
b3 :> Int
b2 :. Int
b1) (Int
s3 :> Int
s2 :. Int
s1) a
acc a -> ST s (a, a)
splitAcc Int -> Ix3 -> a -> ST s a
action =
    let n :: Int
n = Sz Ix3 -> Int
forall ix. Index ix => Sz ix -> Int
totalElem Sz Ix3
sz
        iShift :: Int
iShift = Int
iStart Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
iAcc Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
n
     in Int
-> Scheduler s a
-> Int
-> Int
-> Int
-> a
-> (a -> ST s (a, a))
-> (Int -> a -> ST s a)
-> ST s a
forall s a.
Int
-> Scheduler s a
-> Int
-> Int
-> Int
-> a
-> (a -> ST s (a, a))
-> (Int -> a -> ST s a)
-> ST s a
iterLinearAccST Int
fact Scheduler s a
scheduler Int
0 Int
1 Int
n a
acc a -> ST s (a, a)
splitAcc ((Int -> a -> ST s a) -> ST s a) -> (Int -> a -> ST s a) -> ST s a
forall a b. (a -> b) -> a -> b
$ \ !Int
i ->
          let (Int
i3 :> Int
i2 :. Int
i1) = Sz Ix3 -> Int -> Ix3
forall ix. Index ix => Sz ix -> Int -> ix
fromLinearIndex Sz Ix3
sz Int
i
           in Int -> Ix3 -> a -> ST s a
action (Int
iShift Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
i) ((Int
b3 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
s3 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
i3) Int -> Ix (3 - 1) -> Ix3
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> (Int
b2 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
s2 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
i2) Int -> Int -> Ix2
:. (Int
b1 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
s1 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
i1))
  {-# INLINE iterTargetRowMajorAccST #-}

-- | Constraint synonym that encapsulates all constraints needed for dimension 4 and higher.
--
-- @since 1.0.0
type HighIxN n =
  (4 <= n, KnownNat n, KnownNat (n - 1), Index (IxN (n - 1)), IxN (n - 1) ~ Ix (n - 1))

instance {-# OVERLAPPABLE #-} HighIxN n => Index (IxN n) where
  type Dimensions (IxN n) = n
  dimensions :: forall (proxy :: * -> *). proxy (IxN n) -> Dim
dimensions proxy (IxN n)
_ = Integer -> Dim
forall a. Num a => Integer -> a
fromInteger (Integer -> Dim) -> Integer -> Dim
forall a b. (a -> b) -> a -> b
$ Proxy n -> Integer
forall (n :: Natural) (proxy :: Natural -> *).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall {k} (t :: k). Proxy t
Proxy :: Proxy n)
  {-# INLINE [1] dimensions #-}
  totalElem :: Sz (IxN n) -> Int
totalElem (SafeSz (Int
i :> Ix (n - 1)
ixl)) = (Int -> Int -> Int) -> Int -> IxN (n - 1) -> Int
forall ix a. Index ix => (a -> Int -> a) -> a -> ix -> a
forall a. (a -> Int -> a) -> a -> IxN (n - 1) -> a
foldlIndex Int -> Int -> Int
forall a. Num a => a -> a -> a
(*) Int
i Ix (n - 1)
IxN (n - 1)
ixl
  {-# INLINE [1] totalElem #-}
  consDim :: Int -> Lower (IxN n) -> IxN n
consDim = Int -> Lower (IxN n) -> IxN n
Int -> Ix (n - 1) -> IxN n
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
(:>)
  {-# INLINE [1] consDim #-}
  unconsDim :: IxN n -> (Int, Lower (IxN n))
unconsDim (Int
i :> Ix (n - 1)
ixl) = (Int
i, Lower (IxN n)
Ix (n - 1)
ixl)
  {-# INLINE [1] unconsDim #-}
  snocDim :: Lower (IxN n) -> Int -> IxN n
snocDim (Int
i :> Ix ((n - 1) - 1)
ixl) Int
i1 = Int
i Int -> Ix (n - 1) -> IxN n
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> Lower (IxN (n - 1)) -> Int -> IxN (n - 1)
forall ix. Index ix => Lower ix -> Int -> ix
snocDim Lower (IxN (n - 1))
Ix ((n - 1) - 1)
ixl Int
i1
  {-# INLINE [1] snocDim #-}
  unsnocDim :: IxN n -> (Lower (IxN n), Int)
unsnocDim (Int
i :> Ix (n - 1)
ixl) =
    case IxN (n - 1) -> (Lower (IxN (n - 1)), Int)
forall ix. Index ix => ix -> (Lower ix, Int)
unsnocDim Ix (n - 1)
IxN (n - 1)
ixl of
      (Lower (IxN (n - 1))
ix, Int
i1) -> (Int
i Int -> Ix ((n - 1) - 1) -> IxN (n - 1)
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> Lower (IxN (n - 1))
Ix ((n - 1) - 1)
ix, Int
i1)
  {-# INLINE [1] unsnocDim #-}
  getDimM :: forall (m :: * -> *). MonadThrow m => IxN n -> Dim -> m Int
getDimM ix :: IxN n
ix@(Int
i :> Ix (n - 1)
ixl) Dim
d
    | Dim
d Dim -> Dim -> Bool
forall a. Eq a => a -> a -> Bool
== Proxy (IxN n) -> Dim
forall ix (proxy :: * -> *). Index ix => proxy ix -> Dim
forall (proxy :: * -> *). proxy (IxN n) -> Dim
dimensions (Proxy (IxN n)
forall {k} (t :: k). Proxy t
Proxy :: Proxy (IxN n)) = Int -> m Int
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Int
i
    | Bool
otherwise = m Int -> (Int -> m Int) -> Maybe Int -> m Int
forall b a. b -> (a -> b) -> Maybe a -> b
maybe (IndexException -> m Int
forall e a. (HasCallStack, Exception e) => e -> m a
forall (m :: * -> *) e a.
(MonadThrow m, HasCallStack, Exception e) =>
e -> m a
throwM (IndexException -> m Int) -> IndexException -> m Int
forall a b. (a -> b) -> a -> b
$ IxN n -> Dim -> IndexException
forall ix.
(NFData ix, Eq ix, Show ix, Typeable ix) =>
ix -> Dim -> IndexException
IndexDimensionException IxN n
ix Dim
d) Int -> m Int
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (IxN (n - 1) -> Dim -> Maybe Int
forall ix (m :: * -> *).
(Index ix, MonadThrow m) =>
ix -> Dim -> m Int
forall (m :: * -> *). MonadThrow m => IxN (n - 1) -> Dim -> m Int
getDimM Ix (n - 1)
IxN (n - 1)
ixl Dim
d)
  {-# INLINE [1] getDimM #-}
  setDimM :: forall (m :: * -> *).
MonadThrow m =>
IxN n -> Dim -> Int -> m (IxN n)
setDimM ix :: IxN n
ix@(Int
i :> Ix (n - 1)
ixl) Dim
d Int
di
    | Dim
d Dim -> Dim -> Bool
forall a. Eq a => a -> a -> Bool
== Proxy (IxN n) -> Dim
forall ix (proxy :: * -> *). Index ix => proxy ix -> Dim
forall (proxy :: * -> *). proxy (IxN n) -> Dim
dimensions (Proxy (IxN n)
forall {k} (t :: k). Proxy t
Proxy :: Proxy (IxN n)) = IxN n -> m (IxN n)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
di Int -> Ix (n - 1) -> IxN n
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> Ix (n - 1)
ixl)
    | Bool
otherwise = m (IxN n)
-> (IxN (n - 1) -> m (IxN n)) -> Maybe (IxN (n - 1)) -> m (IxN n)
forall b a. b -> (a -> b) -> Maybe a -> b
maybe (IndexException -> m (IxN n)
forall e a. (HasCallStack, Exception e) => e -> m a
forall (m :: * -> *) e a.
(MonadThrow m, HasCallStack, Exception e) =>
e -> m a
throwM (IndexException -> m (IxN n)) -> IndexException -> m (IxN n)
forall a b. (a -> b) -> a -> b
$ IxN n -> Dim -> IndexException
forall ix.
(NFData ix, Eq ix, Show ix, Typeable ix) =>
ix -> Dim -> IndexException
IndexDimensionException IxN n
ix Dim
d) (IxN n -> m (IxN n)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (IxN n -> m (IxN n))
-> (IxN (n - 1) -> IxN n) -> IxN (n - 1) -> m (IxN n)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int
i Int -> Ix (n - 1) -> IxN n
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:>)) (IxN (n - 1) -> Dim -> Int -> Maybe (IxN (n - 1))
forall ix (m :: * -> *).
(Index ix, MonadThrow m) =>
ix -> Dim -> Int -> m ix
forall (m :: * -> *).
MonadThrow m =>
IxN (n - 1) -> Dim -> Int -> m (IxN (n - 1))
setDimM Ix (n - 1)
IxN (n - 1)
ixl Dim
d Int
di)
  {-# INLINE [1] setDimM #-}
  pullOutDimM :: forall (m :: * -> *).
MonadThrow m =>
IxN n -> Dim -> m (Int, Lower (IxN n))
pullOutDimM ix :: IxN n
ix@(Int
i :> Ix (n - 1)
ixl) Dim
d
    | Dim
d Dim -> Dim -> Bool
forall a. Eq a => a -> a -> Bool
== Proxy (IxN n) -> Dim
forall ix (proxy :: * -> *). Index ix => proxy ix -> Dim
forall (proxy :: * -> *). proxy (IxN n) -> Dim
dimensions (Proxy (IxN n)
forall {k} (t :: k). Proxy t
Proxy :: Proxy (IxN n)) = (Int, IxN (n - 1)) -> m (Int, IxN (n - 1))
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
i, Ix (n - 1)
IxN (n - 1)
ixl)
    | Bool
otherwise =
        m (Int, IxN (n - 1))
-> ((Int, Ix ((n - 1) - 1)) -> m (Int, IxN (n - 1)))
-> Maybe (Int, Ix ((n - 1) - 1))
-> m (Int, IxN (n - 1))
forall b a. b -> (a -> b) -> Maybe a -> b
maybe (IndexException -> m (Int, IxN (n - 1))
forall e a. (HasCallStack, Exception e) => e -> m a
forall (m :: * -> *) e a.
(MonadThrow m, HasCallStack, Exception e) =>
e -> m a
throwM (IndexException -> m (Int, IxN (n - 1)))
-> IndexException -> m (Int, IxN (n - 1))
forall a b. (a -> b) -> a -> b
$ IxN n -> Dim -> IndexException
forall ix.
(NFData ix, Eq ix, Show ix, Typeable ix) =>
ix -> Dim -> IndexException
IndexDimensionException IxN n
ix Dim
d) ((Int, IxN (n - 1)) -> m (Int, IxN (n - 1))
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure ((Int, IxN (n - 1)) -> m (Int, IxN (n - 1)))
-> ((Int, Ix ((n - 1) - 1)) -> (Int, IxN (n - 1)))
-> (Int, Ix ((n - 1) - 1))
-> m (Int, IxN (n - 1))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Ix ((n - 1) - 1) -> IxN (n - 1))
-> (Int, Ix ((n - 1) - 1)) -> (Int, IxN (n - 1))
forall a b. (a -> b) -> (Int, a) -> (Int, b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Int
i Int -> Ix ((n - 1) - 1) -> IxN (n - 1)
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:>)) (IxN (n - 1) -> Dim -> Maybe (Int, Lower (IxN (n - 1)))
forall ix (m :: * -> *).
(Index ix, MonadThrow m) =>
ix -> Dim -> m (Int, Lower ix)
forall (m :: * -> *).
MonadThrow m =>
IxN (n - 1) -> Dim -> m (Int, Lower (IxN (n - 1)))
pullOutDimM Ix (n - 1)
IxN (n - 1)
ixl Dim
d)
  {-# INLINE [1] pullOutDimM #-}
  insertDimM :: forall (m :: * -> *).
MonadThrow m =>
Lower (IxN n) -> Dim -> Int -> m (IxN n)
insertDimM ix :: Lower (IxN n)
ix@(Int
i :> Ix ((n - 1) - 1)
ixl) Dim
d Int
di
    | Dim
d Dim -> Dim -> Bool
forall a. Eq a => a -> a -> Bool
== Proxy (IxN n) -> Dim
forall ix (proxy :: * -> *). Index ix => proxy ix -> Dim
forall (proxy :: * -> *). proxy (IxN n) -> Dim
dimensions (Proxy (IxN n)
forall {k} (t :: k). Proxy t
Proxy :: Proxy (IxN n)) = IxN n -> m (IxN n)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
di Int -> Ix (n - 1) -> IxN n
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> Lower (IxN n)
Ix (n - 1)
ix)
    | Bool
otherwise =
        m (IxN n)
-> (IxN (n - 1) -> m (IxN n)) -> Maybe (IxN (n - 1)) -> m (IxN n)
forall b a. b -> (a -> b) -> Maybe a -> b
maybe (IndexException -> m (IxN n)
forall e a. (HasCallStack, Exception e) => e -> m a
forall (m :: * -> *) e a.
(MonadThrow m, HasCallStack, Exception e) =>
e -> m a
throwM (IndexException -> m (IxN n)) -> IndexException -> m (IxN n)
forall a b. (a -> b) -> a -> b
$ IxN (n - 1) -> Dim -> IndexException
forall ix.
(NFData ix, Eq ix, Show ix, Typeable ix) =>
ix -> Dim -> IndexException
IndexDimensionException Lower (IxN n)
IxN (n - 1)
ix Dim
d) (IxN n -> m (IxN n)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (IxN n -> m (IxN n))
-> (IxN (n - 1) -> IxN n) -> IxN (n - 1) -> m (IxN n)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int
i Int -> Ix (n - 1) -> IxN n
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:>)) (Lower (IxN (n - 1)) -> Dim -> Int -> Maybe (IxN (n - 1))
forall ix (m :: * -> *).
(Index ix, MonadThrow m) =>
Lower ix -> Dim -> Int -> m ix
forall (m :: * -> *).
MonadThrow m =>
Lower (IxN (n - 1)) -> Dim -> Int -> m (IxN (n - 1))
insertDimM Lower (IxN (n - 1))
Ix ((n - 1) - 1)
ixl Dim
d Int
di)
  {-# INLINE [1] insertDimM #-}
  pureIndex :: Int -> IxN n
pureIndex Int
i = Int
i Int -> Ix (n - 1) -> IxN n
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> (Int -> IxN (n - 1)
forall ix. Index ix => Int -> ix
pureIndex Int
i :: Ix (n - 1))
  {-# INLINE [1] pureIndex #-}
  liftIndex :: (Int -> Int) -> IxN n -> IxN n
liftIndex Int -> Int
f (Int
i :> Ix (n - 1)
ix) = Int -> Int
f Int
i Int -> Ix (n - 1) -> IxN n
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> (Int -> Int) -> IxN (n - 1) -> IxN (n - 1)
forall ix. Index ix => (Int -> Int) -> ix -> ix
liftIndex Int -> Int
f Ix (n - 1)
IxN (n - 1)
ix
  {-# INLINE [1] liftIndex #-}
  liftIndex2 :: (Int -> Int -> Int) -> IxN n -> IxN n -> IxN n
liftIndex2 Int -> Int -> Int
f (Int
i :> Ix (n - 1)
ix) (Int
i' :> Ix (n - 1)
ix') = Int -> Int -> Int
f Int
i Int
i' Int -> Ix (n - 1) -> IxN n
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> (Int -> Int -> Int) -> IxN (n - 1) -> IxN (n - 1) -> IxN (n - 1)
forall ix. Index ix => (Int -> Int -> Int) -> ix -> ix -> ix
liftIndex2 Int -> Int -> Int
f Ix (n - 1)
IxN (n - 1)
ix Ix (n - 1)
IxN (n - 1)
ix'
  {-# INLINE [1] liftIndex2 #-}
  repairIndex :: Sz (IxN n)
-> IxN n
-> (Sz Int -> Int -> Int)
-> (Sz Int -> Int -> Int)
-> IxN n
repairIndex (SafeSz (Int
n :> Ix (n - 1)
szL)) (Int
i :> Ix (n - 1)
ixL) Sz Int -> Int -> Int
rBelow Sz Int -> Int -> Int
rOver =
    Sz Int
-> Int -> (Sz Int -> Int -> Int) -> (Sz Int -> Int -> Int) -> Int
forall ix.
Index ix =>
Sz ix
-> ix -> (Sz Int -> Int -> Int) -> (Sz Int -> Int -> Int) -> ix
repairIndex (Int -> Sz Int
forall ix. ix -> Sz ix
SafeSz Int
n) Int
i Sz Int -> Int -> Int
rBelow Sz Int -> Int -> Int
rOver Int -> Ix (n - 1) -> IxN n
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> Sz (IxN (n - 1))
-> IxN (n - 1)
-> (Sz Int -> Int -> Int)
-> (Sz Int -> Int -> Int)
-> IxN (n - 1)
forall ix.
Index ix =>
Sz ix
-> ix -> (Sz Int -> Int -> Int) -> (Sz Int -> Int -> Int) -> ix
repairIndex (IxN (n - 1) -> Sz (IxN (n - 1))
forall ix. ix -> Sz ix
SafeSz Ix (n - 1)
IxN (n - 1)
szL) Ix (n - 1)
IxN (n - 1)
ixL Sz Int -> Int -> Int
rBelow Sz Int -> Int -> Int
rOver
  {-# INLINE [1] repairIndex #-}

---- Unbox Ix

-- | Unboxing of a `Ix2`.
instance VU.Unbox Ix2

newtype instance VU.MVector s Ix2 = MV_Ix2 (VU.MVector s (Int, Int))

instance VM.MVector VU.MVector Ix2 where
  basicLength :: forall s. MVector s Ix2 -> Int
basicLength (MV_Ix2 MVector s (Int, Int)
mvec) = MVector s (Int, Int) -> Int
forall s. MVector s (Int, Int) -> Int
forall (v :: * -> * -> *) a s. MVector v a => v s a -> Int
VM.basicLength MVector s (Int, Int)
mvec
  {-# INLINE basicLength #-}
  basicUnsafeSlice :: forall s. Int -> Int -> MVector s Ix2 -> MVector s Ix2
basicUnsafeSlice Int
idx Int
len (MV_Ix2 MVector s (Int, Int)
mvec) = MVector s (Int, Int) -> MVector s Ix2
forall s. MVector s (Int, Int) -> MVector s Ix2
MV_Ix2 (Int -> Int -> MVector s (Int, Int) -> MVector s (Int, Int)
forall s.
Int -> Int -> MVector s (Int, Int) -> MVector s (Int, Int)
forall (v :: * -> * -> *) a s.
MVector v a =>
Int -> Int -> v s a -> v s a
VM.basicUnsafeSlice Int
idx Int
len MVector s (Int, Int)
mvec)
  {-# INLINE basicUnsafeSlice #-}
  basicOverlaps :: forall s. MVector s Ix2 -> MVector s Ix2 -> Bool
basicOverlaps (MV_Ix2 MVector s (Int, Int)
mvec) (MV_Ix2 MVector s (Int, Int)
mvec') = MVector s (Int, Int) -> MVector s (Int, Int) -> Bool
forall s. MVector s (Int, Int) -> MVector s (Int, Int) -> Bool
forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> v s a -> Bool
VM.basicOverlaps MVector s (Int, Int)
mvec MVector s (Int, Int)
mvec'
  {-# INLINE basicOverlaps #-}
  basicUnsafeNew :: forall s. Int -> ST s (MVector s Ix2)
basicUnsafeNew Int
len = MVector s (Int, Int) -> MVector s Ix2
forall s. MVector s (Int, Int) -> MVector s Ix2
MV_Ix2 (MVector s (Int, Int) -> MVector s Ix2)
-> ST s (MVector s (Int, Int)) -> ST s (MVector s Ix2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> ST s (MVector s (Int, Int))
forall s. Int -> ST s (MVector s (Int, Int))
forall (v :: * -> * -> *) a s. MVector v a => Int -> ST s (v s a)
VM.basicUnsafeNew Int
len
  {-# INLINE basicUnsafeNew #-}
  basicUnsafeReplicate :: forall s. Int -> Ix2 -> ST s (MVector s Ix2)
basicUnsafeReplicate Int
len (Int
i :. Int
j) = MVector s (Int, Int) -> MVector s Ix2
forall s. MVector s (Int, Int) -> MVector s Ix2
MV_Ix2 (MVector s (Int, Int) -> MVector s Ix2)
-> ST s (MVector s (Int, Int)) -> ST s (MVector s Ix2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> (Int, Int) -> ST s (MVector s (Int, Int))
forall s. Int -> (Int, Int) -> ST s (MVector s (Int, Int))
forall (v :: * -> * -> *) a s.
MVector v a =>
Int -> a -> ST s (v s a)
VM.basicUnsafeReplicate Int
len (Int
i, Int
j)
  {-# INLINE basicUnsafeReplicate #-}
  basicUnsafeRead :: forall s. MVector s Ix2 -> Int -> ST s Ix2
basicUnsafeRead (MV_Ix2 MVector s (Int, Int)
mvec) Int
idx = (Int -> Int -> Ix2) -> (Int, Int) -> Ix2
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry Int -> Int -> Ix2
(:.) ((Int, Int) -> Ix2) -> ST s (Int, Int) -> ST s Ix2
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MVector s (Int, Int) -> Int -> ST s (Int, Int)
forall s. MVector s (Int, Int) -> Int -> ST s (Int, Int)
forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> Int -> ST s a
VM.basicUnsafeRead MVector s (Int, Int)
mvec Int
idx
  {-# INLINE basicUnsafeRead #-}
  basicUnsafeWrite :: forall s. MVector s Ix2 -> Int -> Ix2 -> ST s ()
basicUnsafeWrite (MV_Ix2 MVector s (Int, Int)
mvec) Int
idx (Int
i :. Int
j) = MVector s (Int, Int) -> Int -> (Int, Int) -> ST s ()
forall s. MVector s (Int, Int) -> Int -> (Int, Int) -> ST s ()
forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> Int -> a -> ST s ()
VM.basicUnsafeWrite MVector s (Int, Int)
mvec Int
idx (Int
i, Int
j)
  {-# INLINE basicUnsafeWrite #-}
  basicClear :: forall s. MVector s Ix2 -> ST s ()
basicClear (MV_Ix2 MVector s (Int, Int)
mvec) = MVector s (Int, Int) -> ST s ()
forall s. MVector s (Int, Int) -> ST s ()
forall (v :: * -> * -> *) a s. MVector v a => v s a -> ST s ()
VM.basicClear MVector s (Int, Int)
mvec
  {-# INLINE basicClear #-}
  basicSet :: forall s. MVector s Ix2 -> Ix2 -> ST s ()
basicSet (MV_Ix2 MVector s (Int, Int)
mvec) (Int
i :. Int
j) = MVector s (Int, Int) -> (Int, Int) -> ST s ()
forall s. MVector s (Int, Int) -> (Int, Int) -> ST s ()
forall (v :: * -> * -> *) a s. MVector v a => v s a -> a -> ST s ()
VM.basicSet MVector s (Int, Int)
mvec (Int
i, Int
j)
  {-# INLINE basicSet #-}
  basicUnsafeCopy :: forall s. MVector s Ix2 -> MVector s Ix2 -> ST s ()
basicUnsafeCopy (MV_Ix2 MVector s (Int, Int)
mvec) (MV_Ix2 MVector s (Int, Int)
mvec') = MVector s (Int, Int) -> MVector s (Int, Int) -> ST s ()
forall s. MVector s (Int, Int) -> MVector s (Int, Int) -> ST s ()
forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> v s a -> ST s ()
VM.basicUnsafeCopy MVector s (Int, Int)
mvec MVector s (Int, Int)
mvec'
  {-# INLINE basicUnsafeCopy #-}
  basicUnsafeMove :: forall s. MVector s Ix2 -> MVector s Ix2 -> ST s ()
basicUnsafeMove (MV_Ix2 MVector s (Int, Int)
mvec) (MV_Ix2 MVector s (Int, Int)
mvec') = MVector s (Int, Int) -> MVector s (Int, Int) -> ST s ()
forall s. MVector s (Int, Int) -> MVector s (Int, Int) -> ST s ()
forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> v s a -> ST s ()
VM.basicUnsafeMove MVector s (Int, Int)
mvec MVector s (Int, Int)
mvec'
  {-# INLINE basicUnsafeMove #-}
  basicUnsafeGrow :: forall s. MVector s Ix2 -> Int -> ST s (MVector s Ix2)
basicUnsafeGrow (MV_Ix2 MVector s (Int, Int)
mvec) Int
len = MVector s (Int, Int) -> MVector s Ix2
forall s. MVector s (Int, Int) -> MVector s Ix2
MV_Ix2 (MVector s (Int, Int) -> MVector s Ix2)
-> ST s (MVector s (Int, Int)) -> ST s (MVector s Ix2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MVector s (Int, Int) -> Int -> ST s (MVector s (Int, Int))
forall s.
MVector s (Int, Int) -> Int -> ST s (MVector s (Int, Int))
forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> Int -> ST s (v s a)
VM.basicUnsafeGrow MVector s (Int, Int)
mvec Int
len
  {-# INLINE basicUnsafeGrow #-}
#if MIN_VERSION_vector(0,11,0)
  basicInitialize :: forall s. MVector s Ix2 -> ST s ()
basicInitialize (MV_Ix2 MVector s (Int, Int)
mvec) = MVector s (Int, Int) -> ST s ()
forall s. MVector s (Int, Int) -> ST s ()
forall (v :: * -> * -> *) a s. MVector v a => v s a -> ST s ()
VM.basicInitialize MVector s (Int, Int)
mvec
  {-# INLINE basicInitialize #-}
#endif

newtype instance VU.Vector Ix2 = V_Ix2 (VU.Vector (Int, Int))

instance V.Vector VU.Vector Ix2 where
  basicUnsafeFreeze :: forall s. Mutable Vector s Ix2 -> ST s (Vector Ix2)
basicUnsafeFreeze (MV_Ix2 MVector s (Int, Int)
mvec) = Vector (Int, Int) -> Vector Ix2
V_Ix2 (Vector (Int, Int) -> Vector Ix2)
-> ST s (Vector (Int, Int)) -> ST s (Vector Ix2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Mutable Vector s (Int, Int) -> ST s (Vector (Int, Int))
forall s. Mutable Vector s (Int, Int) -> ST s (Vector (Int, Int))
forall (v :: * -> *) a s. Vector v a => Mutable v s a -> ST s (v a)
V.basicUnsafeFreeze Mutable Vector s (Int, Int)
MVector s (Int, Int)
mvec
  {-# INLINE basicUnsafeFreeze #-}
  basicUnsafeThaw :: forall s. Vector Ix2 -> ST s (Mutable Vector s Ix2)
basicUnsafeThaw (V_Ix2 Vector (Int, Int)
vec) = MVector s (Int, Int) -> MVector s Ix2
forall s. MVector s (Int, Int) -> MVector s Ix2
MV_Ix2 (MVector s (Int, Int) -> MVector s Ix2)
-> ST s (MVector s (Int, Int)) -> ST s (MVector s Ix2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Vector (Int, Int) -> ST s (Mutable Vector s (Int, Int))
forall s. Vector (Int, Int) -> ST s (Mutable Vector s (Int, Int))
forall (v :: * -> *) a s. Vector v a => v a -> ST s (Mutable v s a)
V.basicUnsafeThaw Vector (Int, Int)
vec
  {-# INLINE basicUnsafeThaw #-}
  basicLength :: Vector Ix2 -> Int
basicLength (V_Ix2 Vector (Int, Int)
vec) = Vector (Int, Int) -> Int
forall (v :: * -> *) a. Vector v a => v a -> Int
V.basicLength Vector (Int, Int)
vec
  {-# INLINE basicLength #-}
  basicUnsafeSlice :: Int -> Int -> Vector Ix2 -> Vector Ix2
basicUnsafeSlice Int
idx Int
len (V_Ix2 Vector (Int, Int)
vec) = Vector (Int, Int) -> Vector Ix2
V_Ix2 (Int -> Int -> Vector (Int, Int) -> Vector (Int, Int)
forall (v :: * -> *) a. Vector v a => Int -> Int -> v a -> v a
V.basicUnsafeSlice Int
idx Int
len Vector (Int, Int)
vec)
  {-# INLINE basicUnsafeSlice #-}
  basicUnsafeIndexM :: Vector Ix2 -> Int -> Box Ix2
basicUnsafeIndexM (V_Ix2 Vector (Int, Int)
vec) Int
idx = (Int -> Int -> Ix2) -> (Int, Int) -> Ix2
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry Int -> Int -> Ix2
(:.) ((Int, Int) -> Ix2) -> Box (Int, Int) -> Box Ix2
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Vector (Int, Int) -> Int -> Box (Int, Int)
forall (v :: * -> *) a. Vector v a => v a -> Int -> Box a
V.basicUnsafeIndexM Vector (Int, Int)
vec Int
idx
  {-# INLINE basicUnsafeIndexM #-}
  basicUnsafeCopy :: forall s. Mutable Vector s Ix2 -> Vector Ix2 -> ST s ()
basicUnsafeCopy (MV_Ix2 MVector s (Int, Int)
mvec) (V_Ix2 Vector (Int, Int)
vec) = Mutable Vector s (Int, Int) -> Vector (Int, Int) -> ST s ()
forall s.
Mutable Vector s (Int, Int) -> Vector (Int, Int) -> ST s ()
forall (v :: * -> *) a s.
Vector v a =>
Mutable v s a -> v a -> ST s ()
V.basicUnsafeCopy Mutable Vector s (Int, Int)
MVector s (Int, Int)
mvec Vector (Int, Int)
vec
  {-# INLINE basicUnsafeCopy #-}
  elemseq :: forall b. Vector Ix2 -> Ix2 -> b -> b
elemseq Vector Ix2
_ = Ix2 -> b -> b
forall a b. a -> b -> b
seq
  {-# INLINE elemseq #-}

---- Unbox Ix

-- | Unboxing of a `IxN`.
instance (3 <= n, VU.Unbox (Ix (n - 1))) => VU.Unbox (IxN n)

newtype instance VU.MVector s (IxN n) = MV_IxN (VU.MVector s Int, VU.MVector s (Ix (n - 1)))

instance (3 <= n, VU.Unbox (Ix (n - 1))) => VM.MVector VU.MVector (IxN n) where
  basicLength :: forall s. MVector s (IxN n) -> Int
basicLength (MV_IxN (MVector s Int
_, MVector s (Ix (n - 1))
mvec)) = MVector s (Ix (n - 1)) -> Int
forall s. MVector s (Ix (n - 1)) -> Int
forall (v :: * -> * -> *) a s. MVector v a => v s a -> Int
VM.basicLength MVector s (Ix (n - 1))
mvec
  {-# INLINE basicLength #-}
  basicUnsafeSlice :: forall s. Int -> Int -> MVector s (IxN n) -> MVector s (IxN n)
basicUnsafeSlice Int
idx Int
len (MV_IxN (MVector s Int
mvec1, MVector s (Ix (n - 1))
mvec)) =
    (MVector s Int, MVector s (Ix (n - 1))) -> MVector s (IxN n)
forall s (n :: Natural).
(MVector s Int, MVector s (Ix (n - 1))) -> MVector s (IxN n)
MV_IxN (Int -> Int -> MVector s Int -> MVector s Int
forall s. Int -> Int -> MVector s Int -> MVector s Int
forall (v :: * -> * -> *) a s.
MVector v a =>
Int -> Int -> v s a -> v s a
VM.basicUnsafeSlice Int
idx Int
len MVector s Int
mvec1, Int -> Int -> MVector s (Ix (n - 1)) -> MVector s (Ix (n - 1))
forall s.
Int -> Int -> MVector s (Ix (n - 1)) -> MVector s (Ix (n - 1))
forall (v :: * -> * -> *) a s.
MVector v a =>
Int -> Int -> v s a -> v s a
VM.basicUnsafeSlice Int
idx Int
len MVector s (Ix (n - 1))
mvec)
  {-# INLINE basicUnsafeSlice #-}
  basicOverlaps :: forall s. MVector s (IxN n) -> MVector s (IxN n) -> Bool
basicOverlaps (MV_IxN (MVector s Int
mvec1, MVector s (Ix (n - 1))
mvec)) (MV_IxN (MVector s Int
mvec1', MVector s (Ix (n - 1))
mvec')) =
    MVector s Int -> MVector s Int -> Bool
forall s. MVector s Int -> MVector s Int -> Bool
forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> v s a -> Bool
VM.basicOverlaps MVector s Int
mvec1 MVector s Int
mvec1' Bool -> Bool -> Bool
&& MVector s (Ix (n - 1)) -> MVector s (Ix (n - 1)) -> Bool
forall s. MVector s (Ix (n - 1)) -> MVector s (Ix (n - 1)) -> Bool
forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> v s a -> Bool
VM.basicOverlaps MVector s (Ix (n - 1))
mvec MVector s (Ix (n - 1))
mvec'
  {-# INLINE basicOverlaps #-}
  basicUnsafeNew :: forall s. Int -> ST s (MVector s (IxN n))
basicUnsafeNew Int
len = do
    MVector s Int
iv <- Int -> ST s (MVector s Int)
forall s. Int -> ST s (MVector s Int)
forall (v :: * -> * -> *) a s. MVector v a => Int -> ST s (v s a)
VM.basicUnsafeNew Int
len
    MVector s (Ix (n - 1))
ivs <- Int -> ST s (MVector s (Ix (n - 1)))
forall s. Int -> ST s (MVector s (Ix (n - 1)))
forall (v :: * -> * -> *) a s. MVector v a => Int -> ST s (v s a)
VM.basicUnsafeNew Int
len
    MVector s (IxN n) -> ST s (MVector s (IxN n))
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return (MVector s (IxN n) -> ST s (MVector s (IxN n)))
-> MVector s (IxN n) -> ST s (MVector s (IxN n))
forall a b. (a -> b) -> a -> b
$ (MVector s Int, MVector s (Ix (n - 1))) -> MVector s (IxN n)
forall s (n :: Natural).
(MVector s Int, MVector s (Ix (n - 1))) -> MVector s (IxN n)
MV_IxN (MVector s Int
iv, MVector s (Ix (n - 1))
ivs)
  {-# INLINE basicUnsafeNew #-}
  basicUnsafeReplicate :: forall s. Int -> IxN n -> ST s (MVector s (IxN n))
basicUnsafeReplicate Int
len (Int
i :> Ix (n - 1)
ix) = do
    MVector s Int
iv <- Int -> Int -> ST s (MVector s Int)
forall s. Int -> Int -> ST s (MVector s Int)
forall (v :: * -> * -> *) a s.
MVector v a =>
Int -> a -> ST s (v s a)
VM.basicUnsafeReplicate Int
len Int
i
    MVector s (Ix (n - 1))
ivs <- Int -> Ix (n - 1) -> ST s (MVector s (Ix (n - 1)))
forall s. Int -> Ix (n - 1) -> ST s (MVector s (Ix (n - 1)))
forall (v :: * -> * -> *) a s.
MVector v a =>
Int -> a -> ST s (v s a)
VM.basicUnsafeReplicate Int
len Ix (n - 1)
ix
    MVector s (IxN n) -> ST s (MVector s (IxN n))
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return (MVector s (IxN n) -> ST s (MVector s (IxN n)))
-> MVector s (IxN n) -> ST s (MVector s (IxN n))
forall a b. (a -> b) -> a -> b
$ (MVector s Int, MVector s (Ix (n - 1))) -> MVector s (IxN n)
forall s (n :: Natural).
(MVector s Int, MVector s (Ix (n - 1))) -> MVector s (IxN n)
MV_IxN (MVector s Int
iv, MVector s (Ix (n - 1))
ivs)
  {-# INLINE basicUnsafeReplicate #-}
  basicUnsafeRead :: forall s. MVector s (IxN n) -> Int -> ST s (IxN n)
basicUnsafeRead (MV_IxN (MVector s Int
mvec1, MVector s (Ix (n - 1))
mvec)) Int
idx = do
    Int
i <- MVector s Int -> Int -> ST s Int
forall s. MVector s Int -> Int -> ST s Int
forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> Int -> ST s a
VM.basicUnsafeRead MVector s Int
mvec1 Int
idx
    Ix (n - 1)
ix <- MVector s (Ix (n - 1)) -> Int -> ST s (Ix (n - 1))
forall s. MVector s (Ix (n - 1)) -> Int -> ST s (Ix (n - 1))
forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> Int -> ST s a
VM.basicUnsafeRead MVector s (Ix (n - 1))
mvec Int
idx
    IxN n -> ST s (IxN n)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return (Int
i Int -> Ix (n - 1) -> IxN n
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> Ix (n - 1)
ix)
  {-# INLINE basicUnsafeRead #-}
  basicUnsafeWrite :: forall s. MVector s (IxN n) -> Int -> IxN n -> ST s ()
basicUnsafeWrite (MV_IxN (MVector s Int
mvec1, MVector s (Ix (n - 1))
mvec)) Int
idx (Int
i :> Ix (n - 1)
ix) = do
    MVector s Int -> Int -> Int -> ST s ()
forall s. MVector s Int -> Int -> Int -> ST s ()
forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> Int -> a -> ST s ()
VM.basicUnsafeWrite MVector s Int
mvec1 Int
idx Int
i
    MVector s (Ix (n - 1)) -> Int -> Ix (n - 1) -> ST s ()
forall s. MVector s (Ix (n - 1)) -> Int -> Ix (n - 1) -> ST s ()
forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> Int -> a -> ST s ()
VM.basicUnsafeWrite MVector s (Ix (n - 1))
mvec Int
idx Ix (n - 1)
ix
  {-# INLINE basicUnsafeWrite #-}
  basicClear :: forall s. MVector s (IxN n) -> ST s ()
basicClear (MV_IxN (MVector s Int
mvec1, MVector s (Ix (n - 1))
mvec)) = MVector s Int -> ST s ()
forall s. MVector s Int -> ST s ()
forall (v :: * -> * -> *) a s. MVector v a => v s a -> ST s ()
VM.basicClear MVector s Int
mvec1 ST s () -> ST s () -> ST s ()
forall a b. ST s a -> ST s b -> ST s b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> MVector s (Ix (n - 1)) -> ST s ()
forall s. MVector s (Ix (n - 1)) -> ST s ()
forall (v :: * -> * -> *) a s. MVector v a => v s a -> ST s ()
VM.basicClear MVector s (Ix (n - 1))
mvec
  {-# INLINE basicClear #-}
  basicSet :: forall s. MVector s (IxN n) -> IxN n -> ST s ()
basicSet (MV_IxN (MVector s Int
mvec1, MVector s (Ix (n - 1))
mvec)) (Int
i :> Ix (n - 1)
ix) = MVector s Int -> Int -> ST s ()
forall s. MVector s Int -> Int -> ST s ()
forall (v :: * -> * -> *) a s. MVector v a => v s a -> a -> ST s ()
VM.basicSet MVector s Int
mvec1 Int
i ST s () -> ST s () -> ST s ()
forall a b. ST s a -> ST s b -> ST s b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> MVector s (Ix (n - 1)) -> Ix (n - 1) -> ST s ()
forall s. MVector s (Ix (n - 1)) -> Ix (n - 1) -> ST s ()
forall (v :: * -> * -> *) a s. MVector v a => v s a -> a -> ST s ()
VM.basicSet MVector s (Ix (n - 1))
mvec Ix (n - 1)
ix
  {-# INLINE basicSet #-}
  basicUnsafeCopy :: forall s. MVector s (IxN n) -> MVector s (IxN n) -> ST s ()
basicUnsafeCopy (MV_IxN (MVector s Int
mvec1, MVector s (Ix (n - 1))
mvec)) (MV_IxN (MVector s Int
mvec1', MVector s (Ix (n - 1))
mvec')) =
    MVector s Int -> MVector s Int -> ST s ()
forall s. MVector s Int -> MVector s Int -> ST s ()
forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> v s a -> ST s ()
VM.basicUnsafeCopy MVector s Int
mvec1 MVector s Int
mvec1' ST s () -> ST s () -> ST s ()
forall a b. ST s a -> ST s b -> ST s b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> MVector s (Ix (n - 1)) -> MVector s (Ix (n - 1)) -> ST s ()
forall s.
MVector s (Ix (n - 1)) -> MVector s (Ix (n - 1)) -> ST s ()
forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> v s a -> ST s ()
VM.basicUnsafeCopy MVector s (Ix (n - 1))
mvec MVector s (Ix (n - 1))
mvec'
  {-# INLINE basicUnsafeCopy #-}
  basicUnsafeMove :: forall s. MVector s (IxN n) -> MVector s (IxN n) -> ST s ()
basicUnsafeMove (MV_IxN (MVector s Int
mvec1, MVector s (Ix (n - 1))
mvec)) (MV_IxN (MVector s Int
mvec1', MVector s (Ix (n - 1))
mvec')) =
    MVector s Int -> MVector s Int -> ST s ()
forall s. MVector s Int -> MVector s Int -> ST s ()
forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> v s a -> ST s ()
VM.basicUnsafeMove MVector s Int
mvec1 MVector s Int
mvec1' ST s () -> ST s () -> ST s ()
forall a b. ST s a -> ST s b -> ST s b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> MVector s (Ix (n - 1)) -> MVector s (Ix (n - 1)) -> ST s ()
forall s.
MVector s (Ix (n - 1)) -> MVector s (Ix (n - 1)) -> ST s ()
forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> v s a -> ST s ()
VM.basicUnsafeMove MVector s (Ix (n - 1))
mvec MVector s (Ix (n - 1))
mvec'
  {-# INLINE basicUnsafeMove #-}
  basicUnsafeGrow :: forall s. MVector s (IxN n) -> Int -> ST s (MVector s (IxN n))
basicUnsafeGrow (MV_IxN (MVector s Int
mvec1, MVector s (Ix (n - 1))
mvec)) Int
len = do
    MVector s Int
iv <- MVector s Int -> Int -> ST s (MVector s Int)
forall s. MVector s Int -> Int -> ST s (MVector s Int)
forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> Int -> ST s (v s a)
VM.basicUnsafeGrow MVector s Int
mvec1 Int
len
    MVector s (Ix (n - 1))
ivs <- MVector s (Ix (n - 1)) -> Int -> ST s (MVector s (Ix (n - 1)))
forall s.
MVector s (Ix (n - 1)) -> Int -> ST s (MVector s (Ix (n - 1)))
forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> Int -> ST s (v s a)
VM.basicUnsafeGrow MVector s (Ix (n - 1))
mvec Int
len
    MVector s (IxN n) -> ST s (MVector s (IxN n))
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return (MVector s (IxN n) -> ST s (MVector s (IxN n)))
-> MVector s (IxN n) -> ST s (MVector s (IxN n))
forall a b. (a -> b) -> a -> b
$ (MVector s Int, MVector s (Ix (n - 1))) -> MVector s (IxN n)
forall s (n :: Natural).
(MVector s Int, MVector s (Ix (n - 1))) -> MVector s (IxN n)
MV_IxN (MVector s Int
iv, MVector s (Ix (n - 1))
ivs)
  {-# INLINE basicUnsafeGrow #-}
#if MIN_VERSION_vector(0,11,0)
  basicInitialize :: forall s. MVector s (IxN n) -> ST s ()
basicInitialize (MV_IxN (MVector s Int
mvec1, MVector s (Ix (n - 1))
mvec)) =
    MVector s Int -> ST s ()
forall s. MVector s Int -> ST s ()
forall (v :: * -> * -> *) a s. MVector v a => v s a -> ST s ()
VM.basicInitialize MVector s Int
mvec1 ST s () -> ST s () -> ST s ()
forall a b. ST s a -> ST s b -> ST s b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> MVector s (Ix (n - 1)) -> ST s ()
forall s. MVector s (Ix (n - 1)) -> ST s ()
forall (v :: * -> * -> *) a s. MVector v a => v s a -> ST s ()
VM.basicInitialize MVector s (Ix (n - 1))
mvec
  {-# INLINE basicInitialize #-}
#endif

newtype instance VU.Vector (IxN n) = V_IxN (VU.Vector Int, VU.Vector (Ix (n - 1)))

instance (3 <= n, VU.Unbox (Ix (n - 1))) => V.Vector VU.Vector (IxN n) where
  basicUnsafeFreeze :: forall s. Mutable Vector s (IxN n) -> ST s (Vector (IxN n))
basicUnsafeFreeze (MV_IxN (MVector s Int
mvec1, MVector s (Ix (n - 1))
mvec)) = do
    Vector Int
iv <- Mutable Vector s Int -> ST s (Vector Int)
forall s. Mutable Vector s Int -> ST s (Vector Int)
forall (v :: * -> *) a s. Vector v a => Mutable v s a -> ST s (v a)
V.basicUnsafeFreeze Mutable Vector s Int
MVector s Int
mvec1
    Vector (Ix (n - 1))
ivs <- Mutable Vector s (Ix (n - 1)) -> ST s (Vector (Ix (n - 1)))
forall s.
Mutable Vector s (Ix (n - 1)) -> ST s (Vector (Ix (n - 1)))
forall (v :: * -> *) a s. Vector v a => Mutable v s a -> ST s (v a)
V.basicUnsafeFreeze Mutable Vector s (Ix (n - 1))
MVector s (Ix (n - 1))
mvec
    Vector (IxN n) -> ST s (Vector (IxN n))
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return (Vector (IxN n) -> ST s (Vector (IxN n)))
-> Vector (IxN n) -> ST s (Vector (IxN n))
forall a b. (a -> b) -> a -> b
$ (Vector Int, Vector (Ix (n - 1))) -> Vector (IxN n)
forall (n :: Natural).
(Vector Int, Vector (Ix (n - 1))) -> Vector (IxN n)
V_IxN (Vector Int
iv, Vector (Ix (n - 1))
ivs)
  {-# INLINE basicUnsafeFreeze #-}
  basicUnsafeThaw :: forall s. Vector (IxN n) -> ST s (Mutable Vector s (IxN n))
basicUnsafeThaw (V_IxN (Vector Int
vec1, Vector (Ix (n - 1))
vec)) = do
    MVector s Int
imv <- Vector Int -> ST s (Mutable Vector s Int)
forall s. Vector Int -> ST s (Mutable Vector s Int)
forall (v :: * -> *) a s. Vector v a => v a -> ST s (Mutable v s a)
V.basicUnsafeThaw Vector Int
vec1
    MVector s (Ix (n - 1))
imvs <- Vector (Ix (n - 1)) -> ST s (Mutable Vector s (Ix (n - 1)))
forall s.
Vector (Ix (n - 1)) -> ST s (Mutable Vector s (Ix (n - 1)))
forall (v :: * -> *) a s. Vector v a => v a -> ST s (Mutable v s a)
V.basicUnsafeThaw Vector (Ix (n - 1))
vec
    MVector s (IxN n) -> ST s (MVector s (IxN n))
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return (MVector s (IxN n) -> ST s (MVector s (IxN n)))
-> MVector s (IxN n) -> ST s (MVector s (IxN n))
forall a b. (a -> b) -> a -> b
$ (MVector s Int, MVector s (Ix (n - 1))) -> MVector s (IxN n)
forall s (n :: Natural).
(MVector s Int, MVector s (Ix (n - 1))) -> MVector s (IxN n)
MV_IxN (MVector s Int
imv, MVector s (Ix (n - 1))
imvs)
  {-# INLINE basicUnsafeThaw #-}
  basicLength :: Vector (IxN n) -> Int
basicLength (V_IxN (Vector Int
_, Vector (Ix (n - 1))
vec)) = Vector (Ix (n - 1)) -> Int
forall (v :: * -> *) a. Vector v a => v a -> Int
V.basicLength Vector (Ix (n - 1))
vec
  {-# INLINE basicLength #-}
  basicUnsafeSlice :: Int -> Int -> Vector (IxN n) -> Vector (IxN n)
basicUnsafeSlice Int
idx Int
len (V_IxN (Vector Int
vec1, Vector (Ix (n - 1))
vec)) =
    (Vector Int, Vector (Ix (n - 1))) -> Vector (IxN n)
forall (n :: Natural).
(Vector Int, Vector (Ix (n - 1))) -> Vector (IxN n)
V_IxN (Int -> Int -> Vector Int -> Vector Int
forall (v :: * -> *) a. Vector v a => Int -> Int -> v a -> v a
V.basicUnsafeSlice Int
idx Int
len Vector Int
vec1, Int -> Int -> Vector (Ix (n - 1)) -> Vector (Ix (n - 1))
forall (v :: * -> *) a. Vector v a => Int -> Int -> v a -> v a
V.basicUnsafeSlice Int
idx Int
len Vector (Ix (n - 1))
vec)
  {-# INLINE basicUnsafeSlice #-}
  basicUnsafeIndexM :: Vector (IxN n) -> Int -> Box (IxN n)
basicUnsafeIndexM (V_IxN (Vector Int
vec1, Vector (Ix (n - 1))
vec)) Int
idx = do
    Int
i <- Vector Int -> Int -> Box Int
forall (v :: * -> *) a. Vector v a => v a -> Int -> Box a
V.basicUnsafeIndexM Vector Int
vec1 Int
idx
    Ix (n - 1)
ix <- Vector (Ix (n - 1)) -> Int -> Box (Ix (n - 1))
forall (v :: * -> *) a. Vector v a => v a -> Int -> Box a
V.basicUnsafeIndexM Vector (Ix (n - 1))
vec Int
idx
    IxN n -> Box (IxN n)
forall a. a -> Box a
forall (m :: * -> *) a. Monad m => a -> m a
return (Int
i Int -> Ix (n - 1) -> IxN n
forall (n :: Natural). Int -> Ix (n - 1) -> IxN n
:> Ix (n - 1)
ix)
  {-# INLINE basicUnsafeIndexM #-}
  basicUnsafeCopy :: forall s. Mutable Vector s (IxN n) -> Vector (IxN n) -> ST s ()
basicUnsafeCopy (MV_IxN (MVector s Int
mvec1, MVector s (Ix (n - 1))
mvec)) (V_IxN (Vector Int
vec1, Vector (Ix (n - 1))
vec)) =
    Mutable Vector s Int -> Vector Int -> ST s ()
forall s. Mutable Vector s Int -> Vector Int -> ST s ()
forall (v :: * -> *) a s.
Vector v a =>
Mutable v s a -> v a -> ST s ()
V.basicUnsafeCopy Mutable Vector s Int
MVector s Int
mvec1 Vector Int
vec1 ST s () -> ST s () -> ST s ()
forall a b. ST s a -> ST s b -> ST s b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Mutable Vector s (Ix (n - 1)) -> Vector (Ix (n - 1)) -> ST s ()
forall s.
Mutable Vector s (Ix (n - 1)) -> Vector (Ix (n - 1)) -> ST s ()
forall (v :: * -> *) a s.
Vector v a =>
Mutable v s a -> v a -> ST s ()
V.basicUnsafeCopy Mutable Vector s (Ix (n - 1))
MVector s (Ix (n - 1))
mvec Vector (Ix (n - 1))
vec
  {-# INLINE basicUnsafeCopy #-}
  elemseq :: forall b. Vector (IxN n) -> IxN n -> b -> b
elemseq Vector (IxN n)
_ = IxN n -> b -> b
forall a b. a -> b -> b
seq
  {-# INLINE elemseq #-}