{-# LANGUAGE GADTs #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE Trustworthy #-}
module Data.Functor.Coyoneda
  ( Coyoneda(..)
  , liftCoyoneda, lowerCoyoneda, lowerM, hoistCoyoneda
  
  , coyonedaToLan, lanToCoyoneda
  ) where
import Control.Applicative as A
import Control.Monad (MonadPlus(..), liftM)
import Control.Monad.Fix
import Control.Monad.Trans.Class
import Control.Comonad
import Control.Comonad.Trans.Class
import Data.Distributive
import Data.Functor.Adjunction
import Data.Functor.Bind
import Data.Functor.Classes
import Data.Functor.Extend
import Data.Functor.Identity
import Data.Functor.Kan.Lan
import Data.Functor.Plus
import Data.Functor.Rep
import Data.Foldable
import Data.Traversable
import Data.Semigroup.Foldable
import Data.Semigroup.Traversable
import Prelude hiding (sequence, lookup, zipWith)
import Text.Read hiding (lift)
data Coyoneda f a where
  Coyoneda :: (b -> a) -> f b -> Coyoneda f a
coyonedaToLan :: Coyoneda f a -> Lan Identity f a
coyonedaToLan :: forall (f :: * -> *) a. Coyoneda f a -> Lan Identity f a
coyonedaToLan (Coyoneda b -> a
ba f b
fb) = (Identity b -> a) -> f b -> Lan Identity f a
forall {k} (g :: k -> *) (b :: k) a (h :: k -> *).
(g b -> a) -> h b -> Lan g h a
Lan (b -> a
ba (b -> a) -> (Identity b -> b) -> Identity b -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Identity b -> b
forall a. Identity a -> a
runIdentity) f b
fb
{-# INLINE coyonedaToLan #-}
lanToCoyoneda :: Lan Identity f a -> Coyoneda f a
lanToCoyoneda :: forall (f :: * -> *) a. Lan Identity f a -> Coyoneda f a
lanToCoyoneda (Lan Identity b -> a
iba f b
fb) = (b -> a) -> f b -> Coyoneda f a
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda (Identity b -> a
iba (Identity b -> a) -> (b -> Identity b) -> b -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> Identity b
forall a. a -> Identity a
Identity) f b
fb
{-# INLINE lanToCoyoneda #-}
instance Functor (Coyoneda f) where
  fmap :: forall a b. (a -> b) -> Coyoneda f a -> Coyoneda f b
fmap a -> b
f (Coyoneda b -> a
g f b
v) = (b -> b) -> f b -> Coyoneda f b
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda (a -> b
f (a -> b) -> (b -> a) -> b -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> a
g) f b
v
  {-# INLINE fmap #-}
instance Apply f => Apply (Coyoneda f) where
  Coyoneda b -> a -> b
mf f b
m <.> :: forall a b. Coyoneda f (a -> b) -> Coyoneda f a -> Coyoneda f b
<.> Coyoneda b -> a
nf f b
n =
    f b -> Coyoneda f b
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (f b -> Coyoneda f b) -> f b -> Coyoneda f b
forall a b. (a -> b) -> a -> b
$ (\b
mres b
nres -> b -> a -> b
mf b
mres (b -> a
nf b
nres)) (b -> b -> b) -> f b -> f (b -> b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f b
m f (b -> b) -> f b -> f b
forall a b. f (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> f b
n
  {-# INLINE (<.>) #-}
  Coyoneda b -> a
_ f b
m .> :: forall a b. Coyoneda f a -> Coyoneda f b -> Coyoneda f b
.> Coyoneda b -> b
g f b
n = (b -> b) -> f b -> Coyoneda f b
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda b -> b
g (f b
m f b -> f b -> f b
forall a b. f a -> f b -> f b
forall (f :: * -> *) a b. Apply f => f a -> f b -> f b
.> f b
n)
  {-# INLINE (.>) #-}
  Coyoneda b -> a
f f b
m <. :: forall a b. Coyoneda f a -> Coyoneda f b -> Coyoneda f a
<. Coyoneda b -> b
_ f b
n = (b -> a) -> f b -> Coyoneda f a
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda b -> a
f (f b
m f b -> f b -> f b
forall a b. f a -> f b -> f a
forall (f :: * -> *) a b. Apply f => f a -> f b -> f a
<. f b
n)
  {-# INLINE (<.) #-}
instance Applicative f => Applicative (Coyoneda f) where
  pure :: forall a. a -> Coyoneda f a
pure = f a -> Coyoneda f a
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (f a -> Coyoneda f a) -> (a -> f a) -> a -> Coyoneda f a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> f a
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure
  {-# INLINE pure #-}
  Coyoneda b -> a -> b
mf f b
m <*> :: forall a b. Coyoneda f (a -> b) -> Coyoneda f a -> Coyoneda f b
<*> Coyoneda b -> a
nf f b
n =
    f b -> Coyoneda f b
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (f b -> Coyoneda f b) -> f b -> Coyoneda f b
forall a b. (a -> b) -> a -> b
$ (\b
mres b
nres -> b -> a -> b
mf b
mres (b -> a
nf b
nres)) (b -> b -> b) -> f b -> f (b -> b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f b
m f (b -> b) -> f b -> f b
forall a b. f (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> f b
n
  {-# INLINE (<*>) #-}
  Coyoneda b -> a
_ f b
m *> :: forall a b. Coyoneda f a -> Coyoneda f b -> Coyoneda f b
*> Coyoneda b -> b
g f b
n = (b -> b) -> f b -> Coyoneda f b
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda b -> b
g (f b
m f b -> f b -> f b
forall a b. f a -> f b -> f b
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> f b
n)
  {-# INLINE (*>) #-}
  Coyoneda b -> a
f f b
m <* :: forall a b. Coyoneda f a -> Coyoneda f b -> Coyoneda f a
<* Coyoneda b -> b
_ f b
n = (b -> a) -> f b -> Coyoneda f a
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda b -> a
f (f b
m f b -> f b -> f b
forall a b. f a -> f b -> f a
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
<* f b
n)
  {-# INLINE (<*) #-}
instance Alternative f => Alternative (Coyoneda f) where
  empty :: forall a. Coyoneda f a
empty = f a -> Coyoneda f a
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda f a
forall a. f a
forall (f :: * -> *) a. Alternative f => f a
empty
  {-# INLINE empty #-}
  Coyoneda f a
m <|> :: forall a. Coyoneda f a -> Coyoneda f a -> Coyoneda f a
<|> Coyoneda f a
n = f a -> Coyoneda f a
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (f a -> Coyoneda f a) -> f a -> Coyoneda f a
forall a b. (a -> b) -> a -> b
$ Coyoneda f a -> f a
forall (f :: * -> *) a. Functor f => Coyoneda f a -> f a
lowerCoyoneda Coyoneda f a
m f a -> f a -> f a
forall a. f a -> f a -> f a
forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> Coyoneda f a -> f a
forall (f :: * -> *) a. Functor f => Coyoneda f a -> f a
lowerCoyoneda Coyoneda f a
n
  {-# INLINE (<|>) #-}
  some :: forall a. Coyoneda f a -> Coyoneda f [a]
some = f [a] -> Coyoneda f [a]
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (f [a] -> Coyoneda f [a])
-> (Coyoneda f a -> f [a]) -> Coyoneda f a -> Coyoneda f [a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f a -> f [a]
forall a. f a -> f [a]
forall (f :: * -> *) a. Alternative f => f a -> f [a]
A.some (f a -> f [a]) -> (Coyoneda f a -> f a) -> Coyoneda f a -> f [a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Coyoneda f a -> f a
forall (f :: * -> *) a. Functor f => Coyoneda f a -> f a
lowerCoyoneda
  {-# INLINE some #-}
  many :: forall a. Coyoneda f a -> Coyoneda f [a]
many = f [a] -> Coyoneda f [a]
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (f [a] -> Coyoneda f [a])
-> (Coyoneda f a -> f [a]) -> Coyoneda f a -> Coyoneda f [a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f a -> f [a]
forall a. f a -> f [a]
forall (f :: * -> *) a. Alternative f => f a -> f [a]
A.many (f a -> f [a]) -> (Coyoneda f a -> f a) -> Coyoneda f a -> f [a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Coyoneda f a -> f a
forall (f :: * -> *) a. Functor f => Coyoneda f a -> f a
lowerCoyoneda
  {-# INLINE many #-}
instance Alt f => Alt (Coyoneda f) where
  Coyoneda f a
m <!> :: forall a. Coyoneda f a -> Coyoneda f a -> Coyoneda f a
<!> Coyoneda f a
n = f a -> Coyoneda f a
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (f a -> Coyoneda f a) -> f a -> Coyoneda f a
forall a b. (a -> b) -> a -> b
$ Coyoneda f a -> f a
forall (f :: * -> *) a. Functor f => Coyoneda f a -> f a
lowerCoyoneda Coyoneda f a
m f a -> f a -> f a
forall a. f a -> f a -> f a
forall (f :: * -> *) a. Alt f => f a -> f a -> f a
<!> Coyoneda f a -> f a
forall (f :: * -> *) a. Functor f => Coyoneda f a -> f a
lowerCoyoneda Coyoneda f a
n
  {-# INLINE (<!>) #-}
instance Plus f => Plus (Coyoneda f) where
  zero :: forall a. Coyoneda f a
zero = f a -> Coyoneda f a
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda f a
forall a. f a
forall (f :: * -> *) a. Plus f => f a
zero
  {-# INLINE zero #-}
instance Bind m => Bind (Coyoneda m) where
  Coyoneda b -> a
f m b
v >>- :: forall a b. Coyoneda m a -> (a -> Coyoneda m b) -> Coyoneda m b
>>- a -> Coyoneda m b
k = m b -> Coyoneda m b
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (m b
v m b -> (b -> m b) -> m b
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- Coyoneda m b -> m b
forall (f :: * -> *) a. Functor f => Coyoneda f a -> f a
lowerCoyoneda (Coyoneda m b -> m b) -> (b -> Coyoneda m b) -> b -> m b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Coyoneda m b
k (a -> Coyoneda m b) -> (b -> a) -> b -> Coyoneda m b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> a
f)
  {-# INLINE (>>-) #-}
instance Monad m => Monad (Coyoneda m) where
  >> :: forall a b. Coyoneda m a -> Coyoneda m b -> Coyoneda m b
(>>) = Coyoneda m a -> Coyoneda m b -> Coyoneda m b
forall a b. Coyoneda m a -> Coyoneda m b -> Coyoneda m b
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>)
  {-# INLINE (>>) #-}
  Coyoneda b -> a
f m b
v >>= :: forall a b. Coyoneda m a -> (a -> Coyoneda m b) -> Coyoneda m b
>>= a -> Coyoneda m b
k = m b -> Coyoneda m b
forall (m :: * -> *) a. Monad m => m a -> Coyoneda m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (m b
v m b -> (b -> m b) -> m b
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= Coyoneda m b -> m b
forall (f :: * -> *) a. Monad f => Coyoneda f a -> f a
lowerM (Coyoneda m b -> m b) -> (b -> Coyoneda m b) -> b -> m b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Coyoneda m b
k (a -> Coyoneda m b) -> (b -> a) -> b -> Coyoneda m b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> a
f)
  {-# INLINE (>>=) #-}
instance MonadTrans Coyoneda where
  lift :: forall (m :: * -> *) a. Monad m => m a -> Coyoneda m a
lift = (a -> a) -> m a -> Coyoneda m a
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda a -> a
forall a. a -> a
id
  {-# INLINE lift #-}
instance MonadFix f => MonadFix (Coyoneda f) where
  mfix :: forall a. (a -> Coyoneda f a) -> Coyoneda f a
mfix a -> Coyoneda f a
f = f a -> Coyoneda f a
forall (m :: * -> *) a. Monad m => m a -> Coyoneda m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (f a -> Coyoneda f a) -> f a -> Coyoneda f a
forall a b. (a -> b) -> a -> b
$ (a -> f a) -> f a
forall a. (a -> f a) -> f a
forall (m :: * -> *) a. MonadFix m => (a -> m a) -> m a
mfix (Coyoneda f a -> f a
forall (f :: * -> *) a. Monad f => Coyoneda f a -> f a
lowerM (Coyoneda f a -> f a) -> (a -> Coyoneda f a) -> a -> f a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Coyoneda f a
f)
  {-# INLINE mfix #-}
instance MonadPlus f => MonadPlus (Coyoneda f) where
  mzero :: forall a. Coyoneda f a
mzero = f a -> Coyoneda f a
forall (m :: * -> *) a. Monad m => m a -> Coyoneda m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift f a
forall a. f a
forall (m :: * -> *) a. MonadPlus m => m a
mzero
  {-# INLINE mzero #-}
  Coyoneda f a
m mplus :: forall a. Coyoneda f a -> Coyoneda f a -> Coyoneda f a
`mplus` Coyoneda f a
n = f a -> Coyoneda f a
forall (m :: * -> *) a. Monad m => m a -> Coyoneda m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (f a -> Coyoneda f a) -> f a -> Coyoneda f a
forall a b. (a -> b) -> a -> b
$ Coyoneda f a -> f a
forall (f :: * -> *) a. Monad f => Coyoneda f a -> f a
lowerM Coyoneda f a
m f a -> f a -> f a
forall a. f a -> f a -> f a
forall (m :: * -> *) a. MonadPlus m => m a -> m a -> m a
`mplus` Coyoneda f a -> f a
forall (f :: * -> *) a. Monad f => Coyoneda f a -> f a
lowerM Coyoneda f a
n
  {-# INLINE mplus #-}
instance Representable f => Representable (Coyoneda f) where
  type Rep (Coyoneda f) = Rep f
  tabulate :: forall a. (Rep (Coyoneda f) -> a) -> Coyoneda f a
tabulate = f a -> Coyoneda f a
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (f a -> Coyoneda f a)
-> ((Rep f -> a) -> f a) -> (Rep f -> a) -> Coyoneda f a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Rep f -> a) -> f a
forall a. (Rep f -> a) -> f a
forall (f :: * -> *) a. Representable f => (Rep f -> a) -> f a
tabulate
  {-# INLINE tabulate #-}
  index :: forall a. Coyoneda f a -> Rep (Coyoneda f) -> a
index = f a -> Rep f -> a
forall a. f a -> Rep f -> a
forall (f :: * -> *) a. Representable f => f a -> Rep f -> a
index (f a -> Rep f -> a)
-> (Coyoneda f a -> f a) -> Coyoneda f a -> Rep f -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Coyoneda f a -> f a
forall (f :: * -> *) a. Functor f => Coyoneda f a -> f a
lowerCoyoneda
  {-# INLINE index #-}
instance Extend w => Extend (Coyoneda w) where
  extended :: forall a b. (Coyoneda w a -> b) -> Coyoneda w a -> Coyoneda w b
extended Coyoneda w a -> b
k (Coyoneda b -> a
f w b
v) = (b -> b) -> w b -> Coyoneda w b
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda b -> b
forall a. a -> a
id (w b -> Coyoneda w b) -> w b -> Coyoneda w b
forall a b. (a -> b) -> a -> b
$ (w b -> b) -> w b -> w b
forall a b. (w a -> b) -> w a -> w b
forall (w :: * -> *) a b. Extend w => (w a -> b) -> w a -> w b
extended (Coyoneda w a -> b
k (Coyoneda w a -> b) -> (w b -> Coyoneda w a) -> w b -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (b -> a) -> w b -> Coyoneda w a
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda b -> a
f) w b
v
  {-# INLINE extended #-}
instance Comonad w => Comonad (Coyoneda w) where
  extend :: forall a b. (Coyoneda w a -> b) -> Coyoneda w a -> Coyoneda w b
extend Coyoneda w a -> b
k (Coyoneda b -> a
f w b
v) = (b -> b) -> w b -> Coyoneda w b
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda b -> b
forall a. a -> a
id (w b -> Coyoneda w b) -> w b -> Coyoneda w b
forall a b. (a -> b) -> a -> b
$ (w b -> b) -> w b -> w b
forall a b. (w a -> b) -> w a -> w b
forall (w :: * -> *) a b. Comonad w => (w a -> b) -> w a -> w b
extend (Coyoneda w a -> b
k (Coyoneda w a -> b) -> (w b -> Coyoneda w a) -> w b -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (b -> a) -> w b -> Coyoneda w a
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda b -> a
f) w b
v
  {-# INLINE extend #-}
  extract :: forall a. Coyoneda w a -> a
extract (Coyoneda b -> a
f w b
v) = b -> a
f (w b -> b
forall a. w a -> a
forall (w :: * -> *) a. Comonad w => w a -> a
extract w b
v)
  {-# INLINE extract #-}
instance ComonadTrans Coyoneda where
  lower :: forall (w :: * -> *) a. Comonad w => Coyoneda w a -> w a
lower (Coyoneda b -> a
f w b
a) = (b -> a) -> w b -> w a
forall a b. (a -> b) -> w a -> w b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> a
f w b
a
  {-# INLINE lower #-}
instance Foldable f => Foldable (Coyoneda f) where
  foldMap :: forall m a. Monoid m => (a -> m) -> Coyoneda f a -> m
foldMap a -> m
f (Coyoneda b -> a
k f b
a) = (b -> m) -> f b -> m
forall m a. Monoid m => (a -> m) -> f a -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap (a -> m
f (a -> m) -> (b -> a) -> b -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> a
k) f b
a
  {-# INLINE foldMap #-}
instance Foldable1 f => Foldable1 (Coyoneda f) where
  foldMap1 :: forall m a. Semigroup m => (a -> m) -> Coyoneda f a -> m
foldMap1 a -> m
f (Coyoneda b -> a
k f b
a) = (b -> m) -> f b -> m
forall m a. Semigroup m => (a -> m) -> f a -> m
forall (t :: * -> *) m a.
(Foldable1 t, Semigroup m) =>
(a -> m) -> t a -> m
foldMap1 (a -> m
f (a -> m) -> (b -> a) -> b -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> a
k) f b
a
  {-# INLINE foldMap1 #-}
instance Traversable f => Traversable (Coyoneda f) where
  traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Coyoneda f a -> f (Coyoneda f b)
traverse a -> f b
f (Coyoneda b -> a
k f b
a) = (b -> b) -> f b -> Coyoneda f b
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda b -> b
forall a. a -> a
id (f b -> Coyoneda f b) -> f (f b) -> f (Coyoneda f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (b -> f b) -> f b -> f (f b)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> f a -> f (f b)
traverse (a -> f b
f (a -> f b) -> (b -> a) -> b -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> a
k) f b
a
  {-# INLINE traverse #-}
instance Traversable1 f => Traversable1 (Coyoneda f) where
  traverse1 :: forall (f :: * -> *) a b.
Apply f =>
(a -> f b) -> Coyoneda f a -> f (Coyoneda f b)
traverse1 a -> f b
f (Coyoneda b -> a
k f b
a) = (b -> b) -> f b -> Coyoneda f b
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda b -> b
forall a. a -> a
id (f b -> Coyoneda f b) -> f (f b) -> f (Coyoneda f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (b -> f b) -> f b -> f (f b)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable1 t, Apply f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b. Apply f => (a -> f b) -> f a -> f (f b)
traverse1 (a -> f b
f (a -> f b) -> (b -> a) -> b -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> a
k) f b
a
  {-# INLINE traverse1 #-}
instance Distributive f => Distributive (Coyoneda f) where
  collect :: forall (f :: * -> *) a b.
Functor f =>
(a -> Coyoneda f b) -> f a -> Coyoneda f (f b)
collect a -> Coyoneda f b
f = f (f b) -> Coyoneda f (f b)
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (f (f b) -> Coyoneda f (f b))
-> (f a -> f (f b)) -> f a -> Coyoneda f (f b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> f b) -> f a -> f (f b)
forall (g :: * -> *) (f :: * -> *) a b.
(Distributive g, Functor f) =>
(a -> g b) -> f a -> g (f b)
forall (f :: * -> *) a b. Functor f => (a -> f b) -> f a -> f (f b)
collect (Coyoneda f b -> f b
forall (f :: * -> *) a. Functor f => Coyoneda f a -> f a
lowerCoyoneda (Coyoneda f b -> f b) -> (a -> Coyoneda f b) -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Coyoneda f b
f)
  {-# INLINE collect #-}
instance (Functor f, Show1 f) => Show1 (Coyoneda f) where
  liftShowsPrec :: forall a.
(Int -> a -> ShowS)
-> ([a] -> ShowS) -> Int -> Coyoneda f a -> ShowS
liftShowsPrec Int -> a -> ShowS
sp [a] -> ShowS
sl Int
d (Coyoneda b -> a
f f b
a) =
    (Int -> f a -> ShowS) -> String -> Int -> f a -> ShowS
forall a. (Int -> a -> ShowS) -> String -> Int -> a -> ShowS
showsUnaryWith ((Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> f a -> ShowS
forall a.
(Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> f a -> ShowS
forall (f :: * -> *) a.
Show1 f =>
(Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> f a -> ShowS
liftShowsPrec Int -> a -> ShowS
sp [a] -> ShowS
sl) String
"liftCoyoneda" Int
d ((b -> a) -> f b -> f a
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> a
f f b
a)
  {-# INLINE liftShowsPrec #-}
instance (Read1 f) => Read1 (Coyoneda f) where
  liftReadsPrec :: forall a.
(Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Coyoneda f a)
liftReadsPrec Int -> ReadS a
rp ReadS [a]
rl = (String -> ReadS (Coyoneda f a)) -> Int -> ReadS (Coyoneda f a)
forall a. (String -> ReadS a) -> Int -> ReadS a
readsData ((String -> ReadS (Coyoneda f a)) -> Int -> ReadS (Coyoneda f a))
-> (String -> ReadS (Coyoneda f a)) -> Int -> ReadS (Coyoneda f a)
forall a b. (a -> b) -> a -> b
$
    (Int -> ReadS (f a))
-> String
-> (f a -> Coyoneda f a)
-> String
-> ReadS (Coyoneda f a)
forall a t.
(Int -> ReadS a) -> String -> (a -> t) -> String -> ReadS t
readsUnaryWith ((Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (f a)
forall a. (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (f a)
forall (f :: * -> *) a.
Read1 f =>
(Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (f a)
liftReadsPrec Int -> ReadS a
rp ReadS [a]
rl) String
"liftCoyoneda" f a -> Coyoneda f a
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda
  {-# INLINE liftReadsPrec #-}
instance (Functor f, Show1 f, Show a) => Show (Coyoneda f a) where
  showsPrec :: Int -> Coyoneda f a -> ShowS
showsPrec = Int -> Coyoneda f a -> ShowS
forall (f :: * -> *) a. (Show1 f, Show a) => Int -> f a -> ShowS
showsPrec1
  {-# INLINE showsPrec #-}
instance Read (f a) => Read (Coyoneda f a) where
  readPrec :: ReadPrec (Coyoneda f a)
readPrec = ReadPrec (Coyoneda f a) -> ReadPrec (Coyoneda f a)
forall a. ReadPrec a -> ReadPrec a
parens (ReadPrec (Coyoneda f a) -> ReadPrec (Coyoneda f a))
-> ReadPrec (Coyoneda f a) -> ReadPrec (Coyoneda f a)
forall a b. (a -> b) -> a -> b
$ Int -> ReadPrec (Coyoneda f a) -> ReadPrec (Coyoneda f a)
forall a. Int -> ReadPrec a -> ReadPrec a
prec Int
10 (ReadPrec (Coyoneda f a) -> ReadPrec (Coyoneda f a))
-> ReadPrec (Coyoneda f a) -> ReadPrec (Coyoneda f a)
forall a b. (a -> b) -> a -> b
$ do
    Ident String
"liftCoyoneda" <- ReadPrec Lexeme
lexP
    f a -> Coyoneda f a
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (f a -> Coyoneda f a) -> ReadPrec (f a) -> ReadPrec (Coyoneda f a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ReadPrec (f a) -> ReadPrec (f a)
forall a. ReadPrec a -> ReadPrec a
step ReadPrec (f a)
forall a. Read a => ReadPrec a
readPrec
  {-# INLINE readPrec #-}
instance Eq1 f => Eq1 (Coyoneda f) where
  liftEq :: forall a b.
(a -> b -> Bool) -> Coyoneda f a -> Coyoneda f b -> Bool
liftEq a -> b -> Bool
eq (Coyoneda b -> a
f f b
xs) (Coyoneda b -> b
g f b
ys) =
    (b -> b -> Bool) -> f b -> f b -> Bool
forall a b. (a -> b -> Bool) -> f a -> f b -> Bool
forall (f :: * -> *) a b.
Eq1 f =>
(a -> b -> Bool) -> f a -> f b -> Bool
liftEq (\b
x b
y -> a -> b -> Bool
eq (b -> a
f b
x) (b -> b
g b
y)) f b
xs f b
ys
  {-# INLINE liftEq #-}
instance Ord1 f => Ord1 (Coyoneda f) where
  liftCompare :: forall a b.
(a -> b -> Ordering) -> Coyoneda f a -> Coyoneda f b -> Ordering
liftCompare a -> b -> Ordering
cmp (Coyoneda b -> a
f f b
xs) (Coyoneda b -> b
g f b
ys) =
    (b -> b -> Ordering) -> f b -> f b -> Ordering
forall a b. (a -> b -> Ordering) -> f a -> f b -> Ordering
forall (f :: * -> *) a b.
Ord1 f =>
(a -> b -> Ordering) -> f a -> f b -> Ordering
liftCompare (\b
x b
y -> a -> b -> Ordering
cmp (b -> a
f b
x) (b -> b
g b
y)) f b
xs f b
ys
  {-# INLINE liftCompare #-}
instance (Eq1 f, Eq a) => Eq (Coyoneda f a) where
  == :: Coyoneda f a -> Coyoneda f a -> Bool
(==) = Coyoneda f a -> Coyoneda f a -> Bool
forall (f :: * -> *) a. (Eq1 f, Eq a) => f a -> f a -> Bool
eq1
  {-# INLINE (==) #-}
instance (Ord1 f, Ord a) => Ord (Coyoneda f a) where
  compare :: Coyoneda f a -> Coyoneda f a -> Ordering
compare = Coyoneda f a -> Coyoneda f a -> Ordering
forall (f :: * -> *) a. (Ord1 f, Ord a) => f a -> f a -> Ordering
compare1
  {-# INLINE compare #-}
instance Adjunction f g => Adjunction (Coyoneda f) (Coyoneda g) where
  unit :: forall a. a -> Coyoneda g (Coyoneda f a)
unit = g (Coyoneda f a) -> Coyoneda g (Coyoneda f a)
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (g (Coyoneda f a) -> Coyoneda g (Coyoneda f a))
-> (a -> g (Coyoneda f a)) -> a -> Coyoneda g (Coyoneda f a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (f a -> Coyoneda f a) -> a -> g (Coyoneda f a)
forall a b. (f a -> b) -> a -> g b
forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(f a -> b) -> a -> u b
leftAdjunct f a -> Coyoneda f a
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda
  {-# INLINE unit #-}
  counit :: forall a. Coyoneda f (Coyoneda g a) -> a
counit = (Coyoneda g a -> g a) -> f (Coyoneda g a) -> a
forall a b. (a -> g b) -> f a -> b
forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(a -> u b) -> f a -> b
rightAdjunct Coyoneda g a -> g a
forall (f :: * -> *) a. Functor f => Coyoneda f a -> f a
lowerCoyoneda (f (Coyoneda g a) -> a)
-> (Coyoneda f (Coyoneda g a) -> f (Coyoneda g a))
-> Coyoneda f (Coyoneda g a)
-> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Coyoneda f (Coyoneda g a) -> f (Coyoneda g a)
forall (f :: * -> *) a. Functor f => Coyoneda f a -> f a
lowerCoyoneda
  {-# INLINE counit #-}
liftCoyoneda :: f a -> Coyoneda f a
liftCoyoneda :: forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda = (a -> a) -> f a -> Coyoneda f a
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda a -> a
forall a. a -> a
id
{-# INLINE liftCoyoneda #-}
lowerCoyoneda :: Functor f => Coyoneda f a -> f a
lowerCoyoneda :: forall (f :: * -> *) a. Functor f => Coyoneda f a -> f a
lowerCoyoneda (Coyoneda b -> a
f f b
m) = (b -> a) -> f b -> f a
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> a
f f b
m
{-# INLINE lowerCoyoneda #-}
lowerM :: Monad f => Coyoneda f a -> f a
lowerM :: forall (f :: * -> *) a. Monad f => Coyoneda f a -> f a
lowerM (Coyoneda b -> a
f f b
m) = (b -> a) -> f b -> f a
forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
liftM b -> a
f f b
m
{-# INLINE lowerM #-}
hoistCoyoneda :: (forall a. f a -> g a) -> (Coyoneda f b -> Coyoneda g b)
hoistCoyoneda :: forall (f :: * -> *) (g :: * -> *) b.
(forall a. f a -> g a) -> Coyoneda f b -> Coyoneda g b
hoistCoyoneda forall a. f a -> g a
f (Coyoneda b -> b
g f b
x) = (b -> b) -> g b -> Coyoneda g b
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda b -> b
g (f b -> g b
forall a. f a -> g a
f f b
x)
{-# INLINE hoistCoyoneda #-}