{-# OPTIONS_HADDOCK hide #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE NoMonomorphismRestriction #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeFamilyDependencies #-}
{-# LANGUAGE TypeOperators #-}
module Data.Generics.Internal.Profunctor.Iso where
import Data.Profunctor.Indexed
import GHC.Generics ((:*:)(..), (:+:)(..), Generic(..), M1(..), K1(..), Rep)
import Data.Generics.Internal.GenericN (Rec (..))
type Iso s t a b
= forall p i. (Profunctor p) => p i a b -> p i s t
type Iso' s a = Iso s s a a
repIso :: (Generic a, Generic b) => Iso a b (Rep a x) (Rep b x)
repIso :: forall a b x. (Generic a, Generic b) => Iso a b (Rep a x) (Rep b x)
repIso = (a -> Rep a x) -> (Rep b x -> b) -> Iso a b (Rep a x) (Rep b x)
forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso a -> Rep a x
forall x. a -> Rep a x
forall a x. Generic a => a -> Rep a x
from Rep b x -> b
forall a x. Generic a => Rep a x -> a
forall x. Rep b x -> b
to
mIso :: Iso (M1 i c f p) (M1 i c g p) (f p) (g p)
mIso :: forall i (c :: Meta) (f :: * -> *) p (g :: * -> *)
(p :: * -> * -> * -> *) i.
Profunctor p =>
p i (f p) (g p) -> p i (M1 i c f p) (M1 i c g p)
mIso = (M1 i c f p -> f p)
-> (g p -> M1 i c g p) -> Iso (M1 i c f p) (M1 i c g p) (f p) (g p)
forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso M1 i c f p -> f p
forall k i (c :: Meta) (f :: k -> *) (p :: k). M1 i c f p -> f p
unM1 g p -> M1 i c g p
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1
{-# INLINE mIso #-}
kIso :: Iso (K1 r a p) (K1 r b p) a b
kIso :: forall r a p b (p :: * -> * -> * -> *) i.
Profunctor p =>
p i a b -> p i (K1 r a p) (K1 r b p)
kIso = (K1 r a p -> a) -> (b -> K1 r b p) -> Iso (K1 r a p) (K1 r b p) a b
forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso K1 r a p -> a
forall k i c (p :: k). K1 i c p -> c
unK1 b -> K1 r b p
forall k i c (p :: k). c -> K1 i c p
K1
{-# INLINE kIso #-}
recIso :: Iso (Rec r a p) (Rec r b p) a b
recIso :: forall r a p b (p :: * -> * -> * -> *) i.
Profunctor p =>
p i a b -> p i (Rec r a p) (Rec r b p)
recIso = (Rec r a p -> a)
-> (b -> Rec r b p) -> Iso (Rec r a p) (Rec r b p) a b
forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso (K1 R a p -> a
forall k i c (p :: k). K1 i c p -> c
unK1 (K1 R a p -> a) -> (Rec r a p -> K1 R a p) -> Rec r a p -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Rec r a p -> K1 R a p
forall {k} p a (x :: k). Rec p a x -> K1 R a x
unRec) (K1 R b p -> Rec r b p
forall {k} p a (x :: k). K1 R a x -> Rec p a x
Rec (K1 R b p -> Rec r b p) -> (b -> K1 R b p) -> b -> Rec r b p
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> K1 R b p
forall k i c (p :: k). c -> K1 i c p
K1)
{-# INLINE recIso #-}
sumIso :: Iso ((a :+: b) x) ((a' :+: b') x) (Either (a x) (b x)) (Either (a' x) (b' x))
sumIso :: forall (a :: * -> *) (b :: * -> *) x (a' :: * -> *) (b' :: * -> *)
(p :: * -> * -> * -> *) i.
Profunctor p =>
p i (Either (a x) (b x)) (Either (a' x) (b' x))
-> p i ((:+:) a b x) ((:+:) a' b' x)
sumIso = ((:+:) a b x -> Either (a x) (b x))
-> (Either (a' x) (b' x) -> (:+:) a' b' x)
-> Iso
((:+:) a b x)
((:+:) a' b' x)
(Either (a x) (b x))
(Either (a' x) (b' x))
forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso (:+:) a b x -> Either (a x) (b x)
forall {f :: * -> *} {g :: * -> *} {p}.
(:+:) f g p -> Either (f p) (g p)
back Either (a' x) (b' x) -> (:+:) a' b' x
forall {f :: * -> *} {p} {g :: * -> *}.
Either (f p) (g p) -> (:+:) f g p
forth
where forth :: Either (f p) (g p) -> (:+:) f g p
forth (Left f p
l) = f p -> (:+:) f g p
forall k (f :: k -> *) (g :: k -> *) (p :: k). f p -> (:+:) f g p
L1 f p
l
forth (Right g p
r) = g p -> (:+:) f g p
forall k (f :: k -> *) (g :: k -> *) (p :: k). g p -> (:+:) f g p
R1 g p
r
back :: (:+:) f g p -> Either (f p) (g p)
back (L1 f p
l) = f p -> Either (f p) (g p)
forall a b. a -> Either a b
Left f p
l
back (R1 g p
r) = g p -> Either (f p) (g p)
forall a b. b -> Either a b
Right g p
r
{-# INLINE sumIso #-}
prodIso :: Iso ((a :*: b) x) ((a' :*: b') x) (a x, b x) (a' x, b' x)
prodIso :: forall (a :: * -> *) (b :: * -> *) x (a' :: * -> *) (b' :: * -> *)
(p :: * -> * -> * -> *) i.
Profunctor p =>
p i (a x, b x) (a' x, b' x) -> p i ((:*:) a b x) ((:*:) a' b' x)
prodIso = ((:*:) a b x -> (a x, b x))
-> ((a' x, b' x) -> (:*:) a' b' x)
-> Iso ((:*:) a b x) ((:*:) a' b' x) (a x, b x) (a' x, b' x)
forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso (\(a x
a :*: b x
b) -> (a x
a, b x
b)) (\(a' x
a, b' x
b) -> (a' x
a a' x -> b' x -> (:*:) a' b' x
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: b' x
b))
assoc3 :: Iso ((a, b), c) ((a', b'), c') (a, (b, c)) (a', (b', c'))
assoc3 :: forall a b c a' b' c' (p :: * -> * -> * -> *) i.
Profunctor p =>
p i (a, (b, c)) (a', (b', c')) -> p i ((a, b), c) ((a', b'), c')
assoc3 = (((a, b), c) -> (a, (b, c)))
-> ((a', (b', c')) -> ((a', b'), c'))
-> Iso ((a, b), c) ((a', b'), c') (a, (b, c)) (a', (b', c'))
forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso (\((a
a, b
b), c
c) -> (a
a, (b
b, c
c))) (\(a'
a, (b'
b, c'
c)) -> ((a'
a, b'
b), c'
c))
fromIso :: Iso s t a b -> Iso b a t s
fromIso :: forall s t a b. Iso s t a b -> Iso b a t s
fromIso Iso s t a b
l = Iso s t a b
-> ((s -> a) -> (b -> t) -> p i t s -> p i b a)
-> p i t s
-> p i b a
forall s t a b r. Iso s t a b -> ((s -> a) -> (b -> t) -> r) -> r
withIso p i a b -> p i s t
Iso s t a b
l (((s -> a) -> (b -> t) -> p i t s -> p i b a)
-> p i t s -> p i b a)
-> ((s -> a) -> (b -> t) -> p i t s -> p i b a)
-> p i t s
-> p i b a
forall a b. (a -> b) -> a -> b
$ \ s -> a
sa b -> t
bt -> (b -> t) -> (s -> a) -> Iso b a t s
forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso b -> t
bt s -> a
sa
{-# INLINE fromIso #-}
iso :: (s -> a) -> (b -> t) -> Iso s t a b
iso :: forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso s -> a
sa b -> t
bt = (s -> a) -> (b -> t) -> p i a b -> p i s t
forall a b c d i. (a -> b) -> (c -> d) -> p i b c -> p i a d
forall (p :: * -> * -> * -> *) a b c d i.
Profunctor p =>
(a -> b) -> (c -> d) -> p i b c -> p i a d
dimap s -> a
sa b -> t
bt
{-# INLINE iso #-}
withIso :: Iso s t a b -> ((s -> a) -> (b -> t) -> r) -> r
withIso :: forall s t a b r. Iso s t a b -> ((s -> a) -> (b -> t) -> r) -> r
withIso Iso s t a b
ai (s -> a) -> (b -> t) -> r
k = case Exchange a b Any a b -> Exchange a b Any s t
Iso s t a b
ai ((a -> a) -> (b -> b) -> Exchange a b Any a b
forall a b i s t. (s -> a) -> (b -> t) -> Exchange a b i s t
Exchange a -> a
forall a. a -> a
id b -> b
forall a. a -> a
id) of
Exchange s -> a
sa b -> t
bt -> (s -> a) -> (b -> t) -> r
k s -> a
sa b -> t
bt
pairing :: Iso s t a b -> Iso s' t' a' b' -> Iso (s, s') (t, t') (a, a') (b, b')
pairing :: forall s t a b s' t' a' b'.
Iso s t a b
-> Iso s' t' a' b' -> Iso (s, s') (t, t') (a, a') (b, b')
pairing Iso s t a b
f Iso s' t' a' b'
g = Iso s t a b
-> ((s -> a)
-> (b -> t) -> p i (a, a') (b, b') -> p i (s, s') (t, t'))
-> p i (a, a') (b, b')
-> p i (s, s') (t, t')
forall s t a b r. Iso s t a b -> ((s -> a) -> (b -> t) -> r) -> r
withIso p i a b -> p i s t
Iso s t a b
f (((s -> a)
-> (b -> t) -> p i (a, a') (b, b') -> p i (s, s') (t, t'))
-> p i (a, a') (b, b') -> p i (s, s') (t, t'))
-> ((s -> a)
-> (b -> t) -> p i (a, a') (b, b') -> p i (s, s') (t, t'))
-> p i (a, a') (b, b')
-> p i (s, s') (t, t')
forall a b. (a -> b) -> a -> b
$ \ s -> a
sa b -> t
bt -> Iso s' t' a' b'
-> ((s' -> a')
-> (b' -> t') -> p i (a, a') (b, b') -> p i (s, s') (t, t'))
-> p i (a, a') (b, b')
-> p i (s, s') (t, t')
forall s t a b r. Iso s t a b -> ((s -> a) -> (b -> t) -> r) -> r
withIso p i a' b' -> p i s' t'
Iso s' t' a' b'
g (((s' -> a')
-> (b' -> t') -> p i (a, a') (b, b') -> p i (s, s') (t, t'))
-> p i (a, a') (b, b') -> p i (s, s') (t, t'))
-> ((s' -> a')
-> (b' -> t') -> p i (a, a') (b, b') -> p i (s, s') (t, t'))
-> p i (a, a') (b, b')
-> p i (s, s') (t, t')
forall a b. (a -> b) -> a -> b
$ \s' -> a'
s'a' b' -> t'
b't' ->
((s, s') -> (a, a'))
-> ((b, b') -> (t, t')) -> Iso (s, s') (t, t') (a, a') (b, b')
forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso ((s -> a) -> (s' -> a') -> (s, s') -> (a, a')
forall {t} {a} {t} {b}. (t -> a) -> (t -> b) -> (t, t) -> (a, b)
bmap s -> a
sa s' -> a'
s'a') ((b -> t) -> (b' -> t') -> (b, b') -> (t, t')
forall {t} {a} {t} {b}. (t -> a) -> (t -> b) -> (t, t) -> (a, b)
bmap b -> t
bt b' -> t'
b't')
where bmap :: (t -> a) -> (t -> b) -> (t, t) -> (a, b)
bmap t -> a
f' t -> b
g' (t
a, t
b) = (t -> a
f' t
a, t -> b
g' t
b)