module Crypto.PubKey.RSA
    ( Error(..)
    , PublicKey(..)
    , PrivateKey(..)
    , Blinder(..)
    
    , generateWith
    , generate
    , generateBlinder
    ) where
import Crypto.Random.Types
import Crypto.Number.ModArithmetic (inverse, inverseCoprimes)
import Crypto.Number.Generate (generateMax)
import Crypto.Number.Prime (generatePrime)
import Crypto.PubKey.RSA.Types
generateWith :: (Integer, Integer) 
             -> Int                
             -> Integer            
             -> Maybe (PublicKey, PrivateKey)
generateWith :: (Integer, Integer)
-> Int -> Integer -> Maybe (PublicKey, PrivateKey)
generateWith (Integer
p,Integer
q) Int
size Integer
e =
    case Integer -> Integer -> Maybe Integer
inverse Integer
e Integer
phi of
        Maybe Integer
Nothing -> Maybe (PublicKey, PrivateKey)
forall a. Maybe a
Nothing
        Just Integer
d  -> (PublicKey, PrivateKey) -> Maybe (PublicKey, PrivateKey)
forall a. a -> Maybe a
Just (PublicKey
pub,Integer -> PrivateKey
priv Integer
d)
  where n :: Integer
n   = Integer
pInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
*Integer
q
        phi :: Integer
phi = (Integer
pInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
*(Integer
qInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)
        
        qinv :: Integer
qinv = Integer -> Integer -> Integer
inverseCoprimes Integer
q Integer
p
        pub :: PublicKey
pub = PublicKey { public_size :: Int
public_size = Int
size
                        , public_n :: Integer
public_n    = Integer
n
                        , public_e :: Integer
public_e    = Integer
e
                        }
        priv :: Integer -> PrivateKey
priv Integer
d = PrivateKey { private_pub :: PublicKey
private_pub  = PublicKey
pub
                            , private_d :: Integer
private_d    = Integer
d
                            , private_p :: Integer
private_p    = Integer
p
                            , private_q :: Integer
private_q    = Integer
q
                            , private_dP :: Integer
private_dP   = Integer
d Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`mod` (Integer
pInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)
                            , private_dQ :: Integer
private_dQ   = Integer
d Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`mod` (Integer
qInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)
                            , private_qinv :: Integer
private_qinv = Integer
qinv
                            }
generate :: MonadRandom m
         => Int     
         -> Integer 
         -> m (PublicKey, PrivateKey)
generate :: forall (m :: * -> *).
MonadRandom m =>
Int -> Integer -> m (PublicKey, PrivateKey)
generate Int
size Integer
e = m (PublicKey, PrivateKey)
loop
  where
    loop :: m (PublicKey, PrivateKey)
loop = do 
        (Integer, Integer)
pq <- m (Integer, Integer)
generatePQ
        case (Integer, Integer)
-> Int -> Integer -> Maybe (PublicKey, PrivateKey)
generateWith (Integer, Integer)
pq Int
size Integer
e of
            Maybe (PublicKey, PrivateKey)
Nothing -> m (PublicKey, PrivateKey)
loop
            Just (PublicKey, PrivateKey)
pp -> (PublicKey, PrivateKey) -> m (PublicKey, PrivateKey)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (PublicKey, PrivateKey)
pp
    generatePQ :: m (Integer, Integer)
generatePQ = do
        Integer
p <- Int -> m Integer
forall (m :: * -> *). MonadRandom m => Int -> m Integer
generatePrime (Int
8 Int -> Int -> Int
forall a. Num a => a -> a -> a
* (Int
size Int -> Int -> Int
forall a. Integral a => a -> a -> a
`div` Int
2))
        Integer
q <- Integer -> m Integer
forall {m :: * -> *}. MonadRandom m => Integer -> m Integer
generateQ Integer
p
        (Integer, Integer) -> m (Integer, Integer)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Integer
p,Integer
q)
    generateQ :: Integer -> m Integer
generateQ Integer
p = do
        Integer
q <- Int -> m Integer
forall (m :: * -> *). MonadRandom m => Int -> m Integer
generatePrime (Int
8 Int -> Int -> Int
forall a. Num a => a -> a -> a
* (Int
size Int -> Int -> Int
forall a. Num a => a -> a -> a
- (Int
size Int -> Int -> Int
forall a. Integral a => a -> a -> a
`div` Int
2)))
        if Integer
p Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
q then Integer -> m Integer
generateQ Integer
p else Integer -> m Integer
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Integer
q
generateBlinder :: MonadRandom m
                => Integer 
                -> m Blinder
generateBlinder :: forall (m :: * -> *). MonadRandom m => Integer -> m Blinder
generateBlinder Integer
n =
    (\Integer
r -> Integer -> Integer -> Blinder
Blinder Integer
r (Integer -> Integer -> Integer
inverseCoprimes Integer
r Integer
n)) (Integer -> Blinder) -> m Integer -> m Blinder
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Integer -> m Integer
forall {m :: * -> *}. MonadRandom m => Integer -> m Integer
generateMax Integer
n