{-# LANGUAGE CPP #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE DeriveDataTypeable #-}
module Basement.Types.Word128
( Word128(..)
, (+)
, (-)
, (*)
, quot
, rem
, bitwiseAnd
, bitwiseOr
, bitwiseXor
, complement
, shiftL
, shiftR
, rotateL
, rotateR
, popCount
, fromNatural
) where
import GHC.Prim
import GHC.Word
import GHC.Types
import qualified Prelude (fromInteger, show, Num(..), quot, rem, mod)
import Data.Bits hiding (complement, popCount, bit, testBit
, rotateL, rotateR, shiftL, shiftR)
import qualified Data.Bits as Bits
import Data.Function (on)
import Foreign.C
import Foreign.Ptr
import Foreign.Storable
import Basement.Compat.Base
import Basement.Compat.Natural
import Basement.Compat.Primitive (bool#)
import Basement.Numerical.Conversion
import Basement.Numerical.Number
#include "MachDeps.h"
data Word128 = Word128 {-# UNPACK #-} !Word64
{-# UNPACK #-} !Word64
deriving (Word128 -> Word128 -> Bool
(Word128 -> Word128 -> Bool)
-> (Word128 -> Word128 -> Bool) -> Eq Word128
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: Word128 -> Word128 -> Bool
== :: Word128 -> Word128 -> Bool
$c/= :: Word128 -> Word128 -> Bool
/= :: Word128 -> Word128 -> Bool
Eq, Typeable)
instance Show Word128 where
show :: Word128 -> String
show Word128
w = Natural -> String
forall a. Show a => a -> String
Prelude.show (Word128 -> Natural
forall a. IsNatural a => a -> Natural
toNatural Word128
w)
instance Enum Word128 where
toEnum :: Int -> Word128
toEnum Int
i = Word64 -> Word64 -> Word128
Word128 Word64
0 (Word64 -> Word128) -> Word64 -> Word128
forall a b. (a -> b) -> a -> b
$ Int64 -> Word64
int64ToWord64 (Int -> Int64
intToInt64 Int
i)
fromEnum :: Word128 -> Int
fromEnum (Word128 Word64
_ Word64
a0) = Word -> Int
wordToInt (Word64 -> Word
word64ToWord Word64
a0)
succ :: Word128 -> Word128
succ (Word128 Word64
a1 Word64
a0)
| Word64
a0 Word64 -> Word64 -> Bool
forall a. Eq a => a -> a -> Bool
== Word64
forall a. Bounded a => a
maxBound = Word64 -> Word64 -> Word128
Word128 (Word64 -> Word64
forall a. Enum a => a -> a
succ Word64
a1) Word64
0
| Bool
otherwise = Word64 -> Word64 -> Word128
Word128 Word64
a1 (Word64 -> Word64
forall a. Enum a => a -> a
succ Word64
a0)
pred :: Word128 -> Word128
pred (Word128 Word64
a1 Word64
a0)
| Word64
a0 Word64 -> Word64 -> Bool
forall a. Eq a => a -> a -> Bool
== Word64
forall a. Bounded a => a
minBound = Word64 -> Word64 -> Word128
Word128 (Word64 -> Word64
forall a. Enum a => a -> a
pred Word64
a1) Word64
forall a. Bounded a => a
maxBound
| Bool
otherwise = Word64 -> Word64 -> Word128
Word128 Word64
a1 (Word64 -> Word64
forall a. Enum a => a -> a
pred Word64
a0)
instance Bounded Word128 where
minBound :: Word128
minBound = Word64 -> Word64 -> Word128
Word128 Word64
forall a. Bounded a => a
minBound Word64
forall a. Bounded a => a
minBound
maxBound :: Word128
maxBound = Word64 -> Word64 -> Word128
Word128 Word64
forall a. Bounded a => a
maxBound Word64
forall a. Bounded a => a
maxBound
instance Ord Word128 where
compare :: Word128 -> Word128 -> Ordering
compare (Word128 Word64
a1 Word64
a0) (Word128 Word64
b1 Word64
b0) =
case Word64 -> Word64 -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Word64
a1 Word64
b1 of
Ordering
EQ -> Word64 -> Word64 -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Word64
a0 Word64
b0
Ordering
r -> Ordering
r
< :: Word128 -> Word128 -> Bool
(<) (Word128 Word64
a1 Word64
a0) (Word128 Word64
b1 Word64
b0) =
case Word64 -> Word64 -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Word64
a1 Word64
b1 of
Ordering
EQ -> Word64
a0 Word64 -> Word64 -> Bool
forall a. Ord a => a -> a -> Bool
< Word64
b0
Ordering
r -> Ordering
r Ordering -> Ordering -> Bool
forall a. Eq a => a -> a -> Bool
== Ordering
LT
<= :: Word128 -> Word128 -> Bool
(<=) (Word128 Word64
a1 Word64
a0) (Word128 Word64
b1 Word64
b0) =
case Word64 -> Word64 -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Word64
a1 Word64
b1 of
Ordering
EQ -> Word64
a0 Word64 -> Word64 -> Bool
forall a. Ord a => a -> a -> Bool
<= Word64
b0
Ordering
r -> Ordering
r Ordering -> Ordering -> Bool
forall a. Eq a => a -> a -> Bool
== Ordering
LT
instance Storable Word128 where
sizeOf :: Word128 -> Int
sizeOf Word128
_ = Int
16
alignment :: Word128 -> Int
alignment Word128
_ = Int
16
peek :: Ptr Word128 -> IO Word128
peek Ptr Word128
p = Word64 -> Word64 -> Word128
Word128 (Word64 -> Word64 -> Word128)
-> IO Word64 -> IO (Word64 -> Word128)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Ptr Word64 -> IO Word64
forall a. Storable a => Ptr a -> IO a
peek (Ptr Word128 -> Ptr Word64
forall a b. Ptr a -> Ptr b
castPtr Ptr Word128
p )
IO (Word64 -> Word128) -> IO Word64 -> IO Word128
forall a b. IO (a -> b) -> IO a -> IO b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Ptr Word64 -> IO Word64
forall a. Storable a => Ptr a -> IO a
peek (Ptr Word128 -> Ptr Any
forall a b. Ptr a -> Ptr b
castPtr Ptr Word128
p Ptr Any -> Int -> Ptr Word64
forall a b. Ptr a -> Int -> Ptr b
`plusPtr` Int
8)
poke :: Ptr Word128 -> Word128 -> IO ()
poke Ptr Word128
p (Word128 Word64
a1 Word64
a0) = do
Ptr Word64 -> Word64 -> IO ()
forall a. Storable a => Ptr a -> a -> IO ()
poke (Ptr Word128 -> Ptr Word64
forall a b. Ptr a -> Ptr b
castPtr Ptr Word128
p ) Word64
a1
Ptr Word64 -> Word64 -> IO ()
forall a. Storable a => Ptr a -> a -> IO ()
poke (Ptr Word128 -> Ptr Any
forall a b. Ptr a -> Ptr b
castPtr Ptr Word128
p Ptr Any -> Int -> Ptr Word64
forall a b. Ptr a -> Int -> Ptr b
`plusPtr` Int
8) Word64
a0
instance Integral Word128 where
fromInteger :: Integer -> Word128
fromInteger = Integer -> Word128
literal
instance HasNegation Word128 where
negate :: Word128 -> Word128
negate = Word128 -> Word128
complement
instance IsIntegral Word128 where
toInteger :: Word128 -> Integer
toInteger (Word128 Word64
a1 Word64
a0) =
(Word64 -> Integer
forall a. IsIntegral a => a -> Integer
toInteger Word64
a1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
64) Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.|.
Word64 -> Integer
forall a. IsIntegral a => a -> Integer
toInteger Word64
a0
instance IsNatural Word128 where
toNatural :: Word128 -> Natural
toNatural (Word128 Word64
a1 Word64
a0) =
(Word64 -> Natural
forall a. IsNatural a => a -> Natural
toNatural Word64
a1 Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
64) Natural -> Natural -> Natural
forall a. Bits a => a -> a -> a
.|.
Word64 -> Natural
forall a. IsNatural a => a -> Natural
toNatural Word64
a0
instance Prelude.Num Word128 where
abs :: Word128 -> Word128
abs Word128
w = Word128
w
signum :: Word128 -> Word128
signum w :: Word128
w@(Word128 Word64
a1 Word64
a0)
| Word64
a1 Word64 -> Word64 -> Bool
forall a. Eq a => a -> a -> Bool
== Word64
0 Bool -> Bool -> Bool
&& Word64
a0 Word64 -> Word64 -> Bool
forall a. Eq a => a -> a -> Bool
== Word64
0 = Word128
w
| Bool
otherwise = Word64 -> Word64 -> Word128
Word128 Word64
0 Word64
1
fromInteger :: Integer -> Word128
fromInteger = Integer -> Word128
literal
+ :: Word128 -> Word128 -> Word128
(+) = Word128 -> Word128 -> Word128
(+)
(-) = (-)
* :: Word128 -> Word128 -> Word128
(*) = Word128 -> Word128 -> Word128
(*)
instance Bits.Bits Word128 where
.&. :: Word128 -> Word128 -> Word128
(.&.) = Word128 -> Word128 -> Word128
bitwiseAnd
.|. :: Word128 -> Word128 -> Word128
(.|.) = Word128 -> Word128 -> Word128
bitwiseOr
xor :: Word128 -> Word128 -> Word128
xor = Word128 -> Word128 -> Word128
bitwiseXor
complement :: Word128 -> Word128
complement = Word128 -> Word128
complement
shiftL :: Word128 -> Int -> Word128
shiftL = Word128 -> Int -> Word128
shiftL
shiftR :: Word128 -> Int -> Word128
shiftR = Word128 -> Int -> Word128
shiftR
rotateL :: Word128 -> Int -> Word128
rotateL = Word128 -> Int -> Word128
rotateL
rotateR :: Word128 -> Int -> Word128
rotateR = Word128 -> Int -> Word128
rotateR
bitSize :: Word128 -> Int
bitSize Word128
_ = Int
128
bitSizeMaybe :: Word128 -> Maybe Int
bitSizeMaybe Word128
_ = Int -> Maybe Int
forall a. a -> Maybe a
Just Int
128
isSigned :: Word128 -> Bool
isSigned Word128
_ = Bool
False
testBit :: Word128 -> Int -> Bool
testBit = Word128 -> Int -> Bool
testBit
bit :: Int -> Word128
bit = Int -> Word128
bit
popCount :: Word128 -> Int
popCount = Word128 -> Int
popCount
(+) :: Word128 -> Word128 -> Word128
#if WORD_SIZE_IN_BITS < 64
(+) = applyBiWordOnNatural (Prelude.+)
#else
#if __GLASGOW_HASKELL__ >= 904
+ :: Word128 -> Word128 -> Word128
(+) (Word128 (W64# Word64#
a1) (W64# Word64#
a0)) (Word128 (W64# Word64#
b1) (W64# Word64#
b0)) = Word64 -> Word64 -> Word128
Word128 (Word64# -> Word64
W64# Word64#
s1) (Word64# -> Word64
W64# (Word# -> Word64#
wordToWord64# Word#
s0))
where
!(# Word#
carry, Word#
s0 #) = Word# -> Word# -> (# Word#, Word# #)
plusWord2# (Word64# -> Word#
GHC.Prim.word64ToWord# Word64#
a0) (Word64# -> Word#
GHC.Prim.word64ToWord# Word64#
b0)
s1 :: Word64#
s1 = Word# -> Word64#
wordToWord64# (Word# -> Word# -> Word#
plusWord# (Word# -> Word# -> Word#
plusWord# (Word64# -> Word#
GHC.Prim.word64ToWord# Word64#
a1) (Word64# -> Word#
GHC.Prim.word64ToWord# Word64#
b1)) Word#
carry)
#else
(+) (Word128 (W64# a1) (W64# a0)) (Word128 (W64# b1) (W64# b0)) = Word128 (W64# s1) (W64# s0)
where
!(# carry, s0 #) = plusWord2# a0 b0
s1 = plusWord# (plusWord# a1 b1) carry
#endif
#endif
applyBiWordOnNatural :: (Natural -> Natural -> Natural)
-> Word128
-> Word128
-> Word128
applyBiWordOnNatural :: (Natural -> Natural -> Natural) -> Word128 -> Word128 -> Word128
applyBiWordOnNatural Natural -> Natural -> Natural
f Word128
a Word128
b = Natural -> Word128
fromNatural (Natural -> Word128) -> Natural -> Word128
forall a b. (a -> b) -> a -> b
$ Natural -> Natural -> Natural
f (Word128 -> Natural
forall a. IsNatural a => a -> Natural
toNatural Word128
a) (Word128 -> Natural
forall a. IsNatural a => a -> Natural
toNatural Word128
b)
(-) :: Word128 -> Word128 -> Word128
(-) Word128
a Word128
b
| Word128
a Word128 -> Word128 -> Bool
forall a. Ord a => a -> a -> Bool
>= Word128
b = (Natural -> Natural -> Natural) -> Word128 -> Word128 -> Word128
applyBiWordOnNatural Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
(Prelude.-) Word128
a Word128
b
| Bool
otherwise = Word128 -> Word128
complement ((Natural -> Natural -> Natural) -> Word128 -> Word128 -> Word128
applyBiWordOnNatural Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
(Prelude.-) Word128
b Word128
a) Word128 -> Word128 -> Word128
+ Word128
1
(*) :: Word128 -> Word128 -> Word128
* :: Word128 -> Word128 -> Word128
(*) = (Natural -> Natural -> Natural) -> Word128 -> Word128 -> Word128
applyBiWordOnNatural Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
(Prelude.*)
quot :: Word128 -> Word128 -> Word128
quot :: Word128 -> Word128 -> Word128
quot = (Natural -> Natural -> Natural) -> Word128 -> Word128 -> Word128
applyBiWordOnNatural Natural -> Natural -> Natural
forall a. Integral a => a -> a -> a
Prelude.quot
rem :: Word128 -> Word128 -> Word128
rem :: Word128 -> Word128 -> Word128
rem = (Natural -> Natural -> Natural) -> Word128 -> Word128 -> Word128
applyBiWordOnNatural Natural -> Natural -> Natural
forall a. Integral a => a -> a -> a
Prelude.rem
bitwiseAnd :: Word128 -> Word128 -> Word128
bitwiseAnd :: Word128 -> Word128 -> Word128
bitwiseAnd (Word128 Word64
a1 Word64
a0) (Word128 Word64
b1 Word64
b0) =
Word64 -> Word64 -> Word128
Word128 (Word64
a1 Word64 -> Word64 -> Word64
forall a. Bits a => a -> a -> a
.&. Word64
b1) (Word64
a0 Word64 -> Word64 -> Word64
forall a. Bits a => a -> a -> a
.&. Word64
b0)
bitwiseOr :: Word128 -> Word128 -> Word128
bitwiseOr :: Word128 -> Word128 -> Word128
bitwiseOr (Word128 Word64
a1 Word64
a0) (Word128 Word64
b1 Word64
b0) =
Word64 -> Word64 -> Word128
Word128 (Word64
a1 Word64 -> Word64 -> Word64
forall a. Bits a => a -> a -> a
.|. Word64
b1) (Word64
a0 Word64 -> Word64 -> Word64
forall a. Bits a => a -> a -> a
.|. Word64
b0)
bitwiseXor :: Word128 -> Word128 -> Word128
bitwiseXor :: Word128 -> Word128 -> Word128
bitwiseXor (Word128 Word64
a1 Word64
a0) (Word128 Word64
b1 Word64
b0) =
Word64 -> Word64 -> Word128
Word128 (Word64
a1 Word64 -> Word64 -> Word64
forall a. Bits a => a -> a -> a
`Bits.xor` Word64
b1) (Word64
a0 Word64 -> Word64 -> Word64
forall a. Bits a => a -> a -> a
`Bits.xor` Word64
b0)
complement :: Word128 -> Word128
complement :: Word128 -> Word128
complement (Word128 Word64
a1 Word64
a0) = Word64 -> Word64 -> Word128
Word128 (Word64 -> Word64
forall a. Bits a => a -> a
Bits.complement Word64
a1) (Word64 -> Word64
forall a. Bits a => a -> a
Bits.complement Word64
a0)
popCount :: Word128 -> Int
popCount :: Word128 -> Int
popCount (Word128 Word64
a1 Word64
a0) = Word64 -> Int
forall a. Bits a => a -> Int
Bits.popCount Word64
a1 Int -> Int -> Int
forall a. Num a => a -> a -> a
Prelude.+ Word64 -> Int
forall a. Bits a => a -> Int
Bits.popCount Word64
a0
shiftL :: Word128 -> Int -> Word128
shiftL :: Word128 -> Int -> Word128
shiftL w :: Word128
w@(Word128 Word64
a1 Word64
a0) Int
n
| Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 Bool -> Bool -> Bool
|| Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
127 = Word64 -> Word64 -> Word128
Word128 Word64
0 Word64
0
| Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
64 = Word64 -> Word64 -> Word128
Word128 Word64
a0 Word64
0
| Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = Word128
w
| Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
64 = Word64 -> Word64 -> Word128
Word128 (Word64
a0 Word64 -> Int -> Word64
forall a. Bits a => a -> Int -> a
`Bits.unsafeShiftL` (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
Prelude.- Int
64)) Word64
0
| Bool
otherwise = Word64 -> Word64 -> Word128
Word128 ((Word64
a1 Word64 -> Int -> Word64
forall a. Bits a => a -> Int -> a
`Bits.unsafeShiftL` Int
n) Word64 -> Word64 -> Word64
forall a. Bits a => a -> a -> a
.|. (Word64
a0 Word64 -> Int -> Word64
forall a. Bits a => a -> Int -> a
`Bits.unsafeShiftR` (Int
64 Int -> Int -> Int
forall a. Num a => a -> a -> a
Prelude.- Int
n)))
(Word64
a0 Word64 -> Int -> Word64
forall a. Bits a => a -> Int -> a
`Bits.unsafeShiftL` Int
n)
shiftR :: Word128 -> Int -> Word128
shiftR :: Word128 -> Int -> Word128
shiftR w :: Word128
w@(Word128 Word64
a1 Word64
a0) Int
n
| Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 Bool -> Bool -> Bool
|| Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
127 = Word64 -> Word64 -> Word128
Word128 Word64
0 Word64
0
| Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
64 = Word64 -> Word64 -> Word128
Word128 Word64
0 Word64
a1
| Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = Word128
w
| Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
64 = Word64 -> Word64 -> Word128
Word128 Word64
0 (Word64
a1 Word64 -> Int -> Word64
forall a. Bits a => a -> Int -> a
`Bits.unsafeShiftR` (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
Prelude.- Int
64))
| Bool
otherwise = Word64 -> Word64 -> Word128
Word128 (Word64
a1 Word64 -> Int -> Word64
forall a. Bits a => a -> Int -> a
`Bits.unsafeShiftR` Int
n)
((Word64
a1 Word64 -> Int -> Word64
forall a. Bits a => a -> Int -> a
`Bits.unsafeShiftL` (Int -> Int
inv64 Int
n)) Word64 -> Word64 -> Word64
forall a. Bits a => a -> a -> a
.|. (Word64
a0 Word64 -> Int -> Word64
forall a. Bits a => a -> Int -> a
`Bits.unsafeShiftR` Int
n))
rotateL :: Word128 -> Int -> Word128
rotateL :: Word128 -> Int -> Word128
rotateL (Word128 Word64
a1 Word64
a0) Int
n'
| Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = Word64 -> Word64 -> Word128
Word128 Word64
a1 Word64
a0
| Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
64 = Word64 -> Word64 -> Word128
Word128 Word64
a0 Word64
a1
| Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
64 = Word64 -> Word64 -> Word128
Word128 (Word64 -> Int -> Word64 -> Int -> Word64
comb64 Word64
a1 Int
n Word64
a0 (Int -> Int
inv64 Int
n)) (Word64 -> Int -> Word64 -> Int -> Word64
comb64 Word64
a0 Int
n Word64
a1 (Int -> Int
inv64 Int
n))
| Bool
otherwise = let nx :: Int
nx = Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
Prelude.- Int
64 in Word64 -> Word64 -> Word128
Word128 (Word64 -> Int -> Word64 -> Int -> Word64
comb64 Word64
a0 Int
nx Word64
a1 (Int -> Int
inv64 Int
nx)) (Word64 -> Int -> Word64 -> Int -> Word64
comb64 Word64
a1 Int
n' Word64
a0 (Int -> Int
inv64 Int
nx))
where
n :: Int
n :: Int
n | Int
n' Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 = Int
n' Int -> Int -> Int
forall a. Integral a => a -> a -> a
`Prelude.mod` Int
128
| Bool
otherwise = Int
128 Int -> Int -> Int
forall a. Num a => a -> a -> a
Prelude.- (Int
n' Int -> Int -> Int
forall a. Integral a => a -> a -> a
`Prelude.mod` Int
128)
rotateR :: Word128 -> Int -> Word128
rotateR :: Word128 -> Int -> Word128
rotateR Word128
w Int
n = Word128 -> Int -> Word128
rotateL Word128
w (Int
128 Int -> Int -> Int
forall a. Num a => a -> a -> a
Prelude.- Int
n)
inv64 :: Int -> Int
inv64 :: Int -> Int
inv64 Int
i = Int
64 Int -> Int -> Int
forall a. Num a => a -> a -> a
Prelude.- Int
i
comb64 :: Word64 -> Int -> Word64 -> Int -> Word64
comb64 :: Word64 -> Int -> Word64 -> Int -> Word64
comb64 Word64
x Int
i Word64
y Int
j =
(Word64
x Word64 -> Int -> Word64
forall a. Bits a => a -> Int -> a
`Bits.unsafeShiftL` Int
i) Word64 -> Word64 -> Word64
forall a. Bits a => a -> a -> a
.|. (Word64
y Word64 -> Int -> Word64
forall a. Bits a => a -> Int -> a
`Bits.unsafeShiftR` Int
j)
testBit :: Word128 -> Int -> Bool
testBit :: Word128 -> Int -> Bool
testBit (Word128 Word64
a1 Word64
a0) Int
n
| Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 Bool -> Bool -> Bool
|| Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
127 = Bool
False
| Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
63 = Word64 -> Int -> Bool
forall a. Bits a => a -> Int -> Bool
Bits.testBit Word64
a1 (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
Prelude.- Int
64)
| Bool
otherwise = Word64 -> Int -> Bool
forall a. Bits a => a -> Int -> Bool
Bits.testBit Word64
a0 Int
n
bit :: Int -> Word128
bit :: Int -> Word128
bit Int
n
| Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 Bool -> Bool -> Bool
|| Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
127 = Word64 -> Word64 -> Word128
Word128 Word64
0 Word64
0
| Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
63 = Word64 -> Word64 -> Word128
Word128 (Int -> Word64
forall a. Bits a => Int -> a
Bits.bit (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
Prelude.- Int
64)) Word64
0
| Bool
otherwise = Word64 -> Word64 -> Word128
Word128 Word64
0 (Int -> Word64
forall a. Bits a => Int -> a
Bits.bit Int
n)
literal :: Integer -> Word128
literal :: Integer -> Word128
literal Integer
i = Word64 -> Word64 -> Word128
Word128
(Integer -> Word64
forall a. Num a => Integer -> a
Prelude.fromInteger (Integer
i Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`Bits.unsafeShiftR` Int
64))
(Integer -> Word64
forall a. Num a => Integer -> a
Prelude.fromInteger Integer
i)
fromNatural :: Natural -> Word128
fromNatural :: Natural -> Word128
fromNatural Natural
n = Word64 -> Word64 -> Word128
Word128
(Integer -> Word64
forall a. Num a => Integer -> a
Prelude.fromInteger (Natural -> Integer
naturalToInteger Natural
n Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`Bits.unsafeShiftR` Int
64))
(Integer -> Word64
forall a. Num a => Integer -> a
Prelude.fromInteger (Integer -> Word64) -> Integer -> Word64
forall a b. (a -> b) -> a -> b
$ Natural -> Integer
naturalToInteger Natural
n)