{- | Module : Data.IntervalMap.Strict Copyright : (c) Christoph Breitkopf 2011 License : BSD-style Maintainer : chbreitkopf@gmail.com Stability : experimental Portability : portable An implementation of maps from intervals to values. The key intervals may overlap, and the implementation contains efficient search functions for all keys containing a point or overlapping an interval. Closed, open, and half-open intervals can be contained in the same map. The functions in this module are strict in both the keys and the values. If you need value-lazy maps, use "Data.IntervalMap.Lazy" instead. The IntervalMap type itself is shared between the lazy and strict modules, meaning that the same IntervalMap value can be passed to functions in both modules (although that is rarely needed). An IntervalMap cannot contain duplicate keys - if you need to map a key to multiple values, use a collection as the value type, for example: @IntervalMap /k/ [/v/]@. It is an error to insert an empty interval into a map. This precondition is not checked by the various construction functions. Since many function names (but not the type name) clash with /Prelude/ names, this module is usually imported @qualified@, e.g. > import Data.IntervalMap (IvMap) > import qualified Data.IntervalMap as IvMap It offers most of the same functions as 'Data.Map', but uses 'Interval' /k/ instead of just /k/ as the key type. Some of the functions need stricter type constraints to maintain the additional information for efficient interval searching, for example 'fromDistinctAscList' needs an 'Ord' /k/ constraint. Also, some functions differ in asymptotic performance (for example 'size') or have not been tuned for efficiency as much as their equivalents in 'Data.Map' (in particular the various set functions). In addition, there are functions specific to maps of intervals, for example to search for all keys containing a given point or contained in a given interval. To stay compatible with standard Haskell, this implementation uses a fixed data type for intervals, and not a multi-parameter type class. Thus, it's currently not possible to define e.g. a 2-tuple as an instance of interval and use that map key. Instead, you must convert your keys to 'Interval'. The implementation is a red-black tree augmented with the maximum upper bound of all keys. Parts of this implementation are based on code from the 'Data.Map' implementation, (c) Daan Leijen 2002, (c) Andriy Palamarchuk 2008. The red-black tree deletion is based on code from llrbtree by Kazu Yamamoto. Of course, any errors are mine. -} module Data.IntervalMap.Strict ( -- * re-export I.Interval(..) -- * Map type , IntervalMap -- instance Eq,Show,Read -- * Operators , (!), (\\) -- * Query , null , size , member , notMember , lookup , findWithDefault , lookupLT , lookupGT , lookupLE , lookupGE -- ** Interval query , containing , intersecting , within -- * Construction , empty , singleton -- ** Insertion , insert , insertWith , insertWithKey , insertLookupWithKey -- ** Delete\/Update , delete , adjust , adjustWithKey , update , updateWithKey , updateLookupWithKey , alter -- * Combine -- ** Union , union , unionWith , unionWithKey , unions , unionsWith -- ** Difference , difference , differenceWith , differenceWithKey -- ** Intersection , intersection , intersectionWith , intersectionWithKey -- * Traversal -- ** Map , map , mapWithKey , mapAccum , mapAccumWithKey , mapAccumRWithKey , mapKeys , mapKeysWith , mapKeysMonotonic -- ** Fold , foldr, foldl , foldrWithKey, foldlWithKey -- * Flatten , flattenWith -- * Conversion , elems , keys , keysSet , assocs -- ** Lists , toList , fromList , fromListWith , fromListWithKey -- ** Ordered lists , toAscList , toDescList , fromAscList , fromAscListWith , fromAscListWithKey , fromDistinctAscList -- * Filter , filter , filterWithKey , partition , partitionWithKey , mapMaybe , mapMaybeWithKey , mapEither , mapEitherWithKey , split , splitLookup , splitAt , splitIntersecting -- * Submap , isSubmapOf, isSubmapOfBy , isProperSubmapOf, isProperSubmapOfBy -- * Min\/Max , findMin , findMax , findLast , lookupMin , lookupMax , lookupLast , deleteMin , deleteMax , deleteFindMin , deleteFindMax , updateMin , updateMax , updateMinWithKey , updateMaxWithKey , minView , maxView , minViewWithKey , maxViewWithKey -- * Debugging , valid -- * Testing , height, maxHeight, showStats ) where import Prelude hiding (filter, foldl, foldr, lookup, map, null, splitAt) import Data.IntervalMap.Interval as I import Data.IntervalMap.Generic.Strict hiding (IntervalMap, flattenWith) import qualified Data.IntervalMap.Generic.Strict as M type IntervalMap k v = M.IntervalMap (I.Interval k) v -- | /O(n)/. Join overlapping intervals with 'combine'. -- -- > flattenWith (+) (fromList [([1,3],5), ([4,6],2), ([5,8],9)]) == mkMap [([1,3],5), ([4,8],11)] flattenWith :: (Ord k) => (v -> v -> v) -> IntervalMap k v -> IntervalMap k v flattenWith :: forall k v. Ord k => (v -> v -> v) -> IntervalMap k v -> IntervalMap k v flattenWith v -> v -> v f IntervalMap k v m = ((Interval k, v) -> (Interval k, v) -> Maybe (Interval k, v)) -> IntervalMap k v -> IntervalMap k v forall k e v. Interval k e => ((k, v) -> (k, v) -> Maybe (k, v)) -> IntervalMap k v -> IntervalMap k v M.flattenWithMonotonic (Interval k, v) -> (Interval k, v) -> Maybe (Interval k, v) forall {a}. Ord a => (Interval a, v) -> (Interval a, v) -> Maybe (Interval a, v) f' IntervalMap k v m where f' :: (Interval a, v) -> (Interval a, v) -> Maybe (Interval a, v) f' (Interval a k1,v v1) (Interval a k2,v v2) = case Interval a -> Interval a -> Maybe (Interval a) forall a. Ord a => Interval a -> Interval a -> Maybe (Interval a) combine Interval a k1 Interval a k2 of Maybe (Interval a) Nothing -> Maybe (Interval a, v) forall a. Maybe a Nothing Just Interval a k' -> let v' :: v v' = v -> v -> v f v v1 v v2 in v v' v -> Maybe (Interval a, v) -> Maybe (Interval a, v) forall a b. a -> b -> b `seq` (Interval a, v) -> Maybe (Interval a, v) forall a. a -> Maybe a Just (Interval a k', v v')